
This is a repository copy of How do charged end-groups on the steric stabilizer block 
influence the formation and long-term stability of Pickering nanoemulsions prepared using 
sterically stabilized diblock copolymer nanoparticles?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158562/

Version: Accepted Version

Article:

Hunter, S.J. orcid.org/0000-0002-9280-1969, Penfold, N.J.W., Chan, D.H. et al. (2 more 
authors) (2020) How do charged end-groups on the steric stabilizer block influence the 
formation and long-term stability of Pickering nanoemulsions prepared using sterically 
stabilized diblock copolymer nanoparticles? Langmuir, 36 (3). pp. 769-780. ISSN 0743-
7463 

https://doi.org/10.1021/acs.langmuir.9b03389

This document is the Accepted Manuscript version of a Published Work that appeared in 
final form in Langmuir, copyright © American Chemical Society after peer review and 
technical editing by the publisher. To access the final edited and published work see 
https://doi.org/10.1021/acs.langmuir.9b03389

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/288432263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

How do Charged End-Groups on the Steric Stabilizer Block Influence the 

Formation and Long-Term Stability of Pickering Nanoemulsions Prepared 

using Sterically-stabilized Diblock Copolymer Nanoparticles? 

 

Saul J. Hunter, Nicholas J. W. Penfold, Derek H. Chan,  

Oleksandr O. Mykhaylyk and Steven P. Armes* 

 
†
Department of Chemistry, Dainton Building, University of Sheffield,  

Brook Hill, Sheffield, Yorkshire S3 7HF, UK. 

 

 

 

 

 

* Author to whom correspondence should be addressed  

(s.p.armes@sheffield.ac.uk) 

 

 

 

 

 

 

 

 

 

 

 



2 

 

ABSTRACT. Reversible addition-fragmentation chain transfer (RAFT) solution polymerization 

is used to prepare well-defined poly(glycerol monomethacrylate) (PGMA) chains bearing 

either carboxylic acid, tertiary amine or neutral end-groups. Each of these PGMA precursors 

was then chain-extended in turn via RAFT aqueous emulsion polymerization of 2,2,2-

trifluoroethyl methacrylate (TFEMA) to form spherical nanoparticles as confirmed by TEM 

analysis. DLS studies indicated an intensity-average diameter of approximately 25 nm. 

Aqueous electrophoresis measurements confirmed that the amine-functional nanoparticles 

became cationic at low pH owing to end-group protonation. In contrast, carboxylic acid-

functional nanoparticles became appreciably anionic at pH 10 owing to end-group ionization. 

Finally, nanoparticles bearing neutral end-groups exhibited zeta potentials of close to zero 

over a range of solution pH. High-shear homogenization of n-dodecane in the presence of 

such sterically-stabilized nanoparticles led to the formation of oil-in-water Pickering 

macroemulsions with volume-average diameters of 20 to 30 µm. High-pressure 

microfluidization was then used to prepare the three corresponding Pickering nanoemulsions. 

Each Pickering nanoemulsion was characterized by analytical centrifugation and TEM 

studies of the dried nanoemulsion droplets confirmed their original nanoparticle 

superstructure. The nanoparticle adsorption efficiency at the oil-water interface was assessed 

by gel permeation chromatography (using a UV detector) for each nanoparticle type at both 

pH 3 and 7. Nanoparticles with charged end-groups exhibited relatively low adsorption 

efficiency, whereas up to 90% of the neutral nanoparticles were adsorbed onto the oil 

droplets. This observation was supported by small-angle X-ray scattering (SAXS) 

experiments, which indicated that the packing efficiency of neutral nanoparticles around oil 

droplets was higher than that of nanoparticles bearing charged end-groups. Analytical 

centrifugation was used to evaluate the colloidal stability of the aged Pickering 

nanoemulsions. Pickering nanoemulsions stabilized with nanoparticles bearing charged end-

groups proved to be significantly less stable than those prepared using neutral end-groups. 
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INTRODUCTION 

As independently recognized by Pickering and Ramsden more than a century ago, Pickering 

emulsions comprise either oil or water droplets stabilized by solid particles.
1-2

 Common 

Pickering emulsifiers include inorganic particles such as silica,
3-4

 titania
5
 or clay platelets.

6
 

However, droplets can also be stabilized by organic particles, such as cellulose-based rods
7-8

 

or polymer latexes.
9-10

 Pickering macroemulsions are widely reported in the literature, with 

examples including oil-in-water (o/w),
11-12

 water-in-oil (w/o),
13-14

 and, more recently, water-

in-water (w/w)
15-17

 and oil-in-oil (o/o).
18

 The emulsion type is primarily determined by the 

particle wettability at the oil-water interface, although the relative volume fraction of the oil 

phase can also play a role.
11, 19-21

 

In recent years, there has been growing interest in Pickering nanoemulsions, which 

comprise droplets of less than approximately 200 nm in diameter.
22-30

 In contrast to 

conventional macroemulsions, nanoemulsions are much less prone to gravitational creaming 

or sedimentation.
31-32

 Furthermore, their significantly higher surface area confers greater 

activity when used in various cosmetics,
33

 drug delivery,
34-35

 food
29, 36-37

 and agrochemical 

formulations.
31, 38-40

 However, many nanoemulsions suffer from Ostwald ripening.
24-25, 27, 40-41

 

In principle, this instability mechanism can be suppressed by selecting a highly water-

insoluble oil (or by adding such an oil to the nanoemulsion formulation).
24, 27

   

The recent development of polymerization-induced self-assembly (PISA) has enabled the 

convenient synthesis of well-defined diblock copolymer nanoparticles.
12, 42-45

 This powerful 

and versatile technique allows the convenient synthesis of 20-25 nm spherical nanoparticles 

in the form of a concentrated dispersion by, for example, reversible addition-fragmentation 

chain transfer (RAFT) aqueous emulsion polymerization.
12, 45-54

 The resulting sterically-

stabilized nanoparticles can be used to prepare either Pickering macroemulsions
12, 55

 or 
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Pickering nanoemulsions.
25, 27

 RAFT polymerization also provides convenient access to a 

wide range of functional end-groups, which can be readily controlled by using a specific 

chain transfer agent (CTA).
56-58

 In PISA formulations, such end-groups are located at the 

terminus of the steric stabilizer chains of the block copolymer nanoparticles. Thus they can 

directly influence the nanoparticle surface charge and can also be used to induce changes in 

copolymer morphology or colloidal stability.
59-63

  

Thompson et al.
25

  recently reported that 25 nm diameter diblock copolymer 

nanoparticles can be used in combination with high-pressure microfluidization to produce oil-

in-water Pickering nanoemulsions. Subsequently, the effect of varying the aqueous solubility 

of the n-alkane droplet phase on the long-term stability of the nanoemulsions was 

examined.
27

 Analytical centrifugation was used to assess droplet coarsening over time. 

Pickering nanoemulsions prepared using either n-octane or n-decane proved to be 

significantly less stable towards Ostwald ripening than those prepared with either n-dodecane 

or n-tetradecane. This difference was rationalized in terms of the greater aqueous solubility of 

the pair of lower n-alkanes. Furthermore, the nanoemulsion composed of n-dodecane droplets 

displayed superior long-term stability compared to a silica-stabilized Pickering nanoemulsion 

prepared using the same oil reported by Persson et al.
24

 This marked difference was attributed 

to the much greater interfacial stress exhibited by sterically-stabilized soft spheres compared 

to ‘hard sphere’ silica particles, as reported by Vermant and co-workers.
64

 

Preparing stable Pickering emulsions using charged nanoparticles can be rather 

problematic
3, 65-69

 owing to strong repulsive electrostatic interactions between particles. This 

can offset the particle detachment energy to such an extent that the overall energy of 

adsorption is comparable to the thermal energy of the nanoparticles. Furthermore, the oil-

water interface is known to possess anionic character,
70-71

 which may hinder the adsorption of 

nanoparticles with the same surface charge.
72-73

 In order to utilize highly-charged 
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nanoparticles as efficient emulsifiers, additives such as oppositely-charged surfactants are 

sometimes employed that adsorb onto the nanoparticles and hence reduce their effective 

surface charge.
3, 6, 72-73

  

The aim of the current study is to examine the effect of systematically varying the 

surface charge of model sterically-stabilized diblock copolymer nanoparticles (see Figure 1) 

on their emulsifier performance during the production of Pickering nanoemulsions via high-

pressure microfluidization. In addition, the effect of surface charge on the long-term stability 

of such Pickering nanoemulsions is assessed using analytical centrifugation.  

 

Figure 1. (a) Synthesis of PGMA48-PTFEMA50 diblock copolymer nanoparticles via RAFT aqueous emulsion 

polymerization of TFEMA, using CPDB, PETTC, or MPETTC RAFT agents, which confer either neutral (0), anionic (-) or 

cationic (+) end-groups on the PGMA48 steric stabilizer chains at a solution pH of 6, 7 or 3, respectively. (b) Summary of the 

chemical structures for the diblock copolymers synthesized using either CPDB, PETTC or MPETTC and the specific 

reaction conditions used in each case.  
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EXPERIMENTAL 

Materials. All reagents were used as received unless otherwise stated. Glycerol 

monomethacrylate (99.8% purity) was obtained from GEO Specialty Chemicals (Hythe, UK). 

2-Cyano-2-propyl benzodithioate, 2,2,2-trifluoroethyl methacrylate (TFEMA), 4,4’-azobis(4-

cyanopentanoic acid) (ACVA), n-dodecane, and deuterium oxide were purchased from 

Aldrich (UK). 2-Cyano-2-propyl dithiobenzoate (CPDB) was purchased from STREM 

Chemicals Ltd. (Cambridge, UK). The 4-cyano-4-(2-

phenylethanesulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC) RAFT agent was 

synthesized as previously reported.
43

 The morpholine-PETTC (MPETTC) RAFT agent was 

also synthesized as previously reported.
61

 d6-Acetone and d4- methanol were purchased from 

Goss Scientific Instruments Ltd. (Cheshire, UK). All other solvents were purchased from 

Fisher Scientific (Loughborough, UK). Deionized water was used for all experiments. 

Synthesis of PGMA48 Macro-CTA via RAFT Solution Polymerization in Ethanol. Three 

PGMA48 macro-CTAs were synthesized via RAFT polymerization of glycerol 

monomethacrylate in ethanol at 70 °C, using either neutral CPDB, carboxylic acid-functional 

PETTC or morpholine-functional MPETTC as the RAFT agent to produce (0) PGMA48, (-) 

PGMA48 or (+) PGMA48 (see Figure 1), as described previously.
12, 59, 61

 
1
H NMR studies 

indicated a mean DP of 48 via end-group analysis in each case (integrated aromatic RAFT 

end-group signals at 7.1−7.4 ppm were compared to those of the two oxymethylene protons 

at 3.5−4.4 ppm).  

Synthesis of PGMA48−PTFEMA50 Diblock Copolymer Nanoparticles via RAFT Aqueous 

Emulsion Polymerization of TFEMA 

A typical protocol for the synthesis of neutral (0) PGMA48-PTFEMA50 diblock copolymer 

nanoparticles was conducted as follows. (0) PGMA48 (0.398 g, 0.050 mmol), TFEMA 
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monomer (0.420 g, 2.5 mmol and ACVA (2.79 mg, 0.010 mmol; PGMA48 macro-

CTA/ACVA molar ratio = 5.0) and deionized water (7.37 g, 10% w/w) were added to a 14 

mL reaction vessel. This aqueous reaction solution was deoxygenated using nitrogen gas for 

30 min at 20 °C prior to immersion into an oil bath set at 70 °C. After 6 h, the TFEMA 

polymerization was quenched by exposing the reaction mixture to air and cooling to ambient 

temperature.  

A typical protocol for the synthesis of anionic (-) PGMA48-PTFEMA50 diblock copolymer 

nanoparticles was conducted as follows. (-) PGMA48 (0.401 g, 0.050 mmol), TFEMA 

monomer (0.415 g, 2.5 mmol and ACVA (2.80 mg, 0.01 mmol; PGMA48 macro-CTA/ACVA 

molar ratio = 5.0) and deionized water (7.41 g, 10% w/w) were added to a 14 mL reaction 

vessel. The pH was adjusted to pH 3 using 1 M HCl. This reaction solution was 

deoxygenated using nitrogen gas for 30 min at 20 °C prior to immersion into an oil bath set at 

70 °C. After 6 h, the TFEMA polymerization was quenched by exposing the reaction mixture 

to air and cooling to ambient temperature. 

A typical protocol for the synthesis of cationic (+) PGMA48-PTFEMA50 diblock copolymer 

was conducted as follows. (+) PGMA48 (0.402 g, 0.05 mmol), TFEMA monomer (0.415 g, 

2.5 mmol and VA-044 (3.19 mg, 0.01 mmol; PGMA48 macro-CTA/VA-044 molar ratio = 

5.0) and deionized water (7.38 g, 10% w/w) were added to a 14 mL reaction vessel. The pH 

was adjusted to pH 7 using 1 M NaOH. This reaction solution was deoxygenated using 

nitrogen gas for 30 min at 20 °C prior to immersion into an oil bath set at 44 °C. After 6 h, 

the TFEMA polymerization was quenched by exposing the reaction mixture to air and 

cooling to ambient temperature. 

Preparation of PGMA48-PTFEMA50-Stabilized Pickering Macroemulsions Using High-

Shear Homogenization. An aqueous dispersion of PGMA48-PTFEMA50 nanoparticles (4.0 

mL, 7.0% w/w) was added to a 14 mL glass vial. The pH was adjusted to either pH 7 or pH 3 
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using 1 M NaOH or HCl respectively and then homogenized with n-dodecane (1.0 mL) for 

2.0 min at 20 °C using an IKA Ultra-Turrax T-18 homogenizer equipped with a 10 mm 

dispersing tool and operating at 13 500 rpm.  

Preparation of PGMA48-PTFEMA50-Stabilized Pickering Nanoemulsions Using High-

Pressure Microfluidization. A Pickering macroemulsion (5.0 mL, initial nanoparticle 

concentration in the aqueous phase = 7.0% w/w) was further processed using an LV1 low-

volume microfluidizer processor (Microfluidics, USA). The pressure was fixed at 20 000 psi 

and each emulsion was passed ten times through the LV1 unit to achieve well-defined 

Pickering nanoemulsions.  

1
H NMR Spectroscopy. All 

1
H NMR spectra were recorded at 400 MHz in d6-acetone or d4-

methanol using a Bruker Avance-400 spectrometer with 64 scans being averaged per 

spectrum. 

Gel Permeation Chromatography (GPC). 0.50% w/w copolymer solutions were prepared in 

HPLC-grade DMF containing 10 mM LiBr and DMSO (1.0 % v/v) was used as a flow-rate 

marker.  GPC studies were conducted at 60 °C using a constant flow rate of 1.0 mL min
-1

. 

The GPC set-up comprised an Agilent 1260 Infinity series degasser and pump, an Agilent 

PL-gel guard column, two Agilent PL-gel 5 µm Mixed-C columns and a refractive index 

detector. Sixteen near-monodisperse poly(methyl methacrylate) standards ranging from 

Mp = 645 to 2 480 000 g mol
-1

 were used for calibration. 

Dynamic Light Scattering (DLS). Intensity-average hydrodynamic diameters were obtained 

by DLS using a Malvern Zetasizer NanoZS instrument at a fixed scattering angle of 173°. 

Aqueous dispersions of 0.1% w/w nanoemulsions were analyzed using disposable cuvettes, 

and the results were averaged over three consecutive runs, each comprising ten analyses. The 

deionized water used to dilute each sample was ultrafiltered through a 0.20 μm membrane in 

order to remove extraneous dust. 
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Aqueous Electrophoresis. Aqueous electrophoresis studies were performed on 0.10% w/w 

aqueous copolymer dispersions containing 1 mM KCl as background electrolyte using a 

Malvern Zetasizer NanoZS instrument at 25 °C. The pH of the copolymer dispersion was 

initially weakly basic and lowered using HCl. Zeta potentials were calculated from the Henry 

equation using the Smoluchowski approximation. All data were averaged over three 

consecutive runs. 

Transmission Electron Microscopy (TEM). Nanoemulsion dispersions were diluted fifty-fold 

using deionised water at either pH 3 or 7 at 20 °C to produce 0.20% w/w dispersions for 

transmission electron microscopy (TEM) studies. Copper/palladium TEM grids (Agar 

Scientific, UK) were surface-coated in-house to produce a thin film of amorphous carbon. 

The grids were then plasma glow-discharged for 30 s to create a hydrophilic surface. 

Individual samples (0.20% w/w, 10 μL) were adsorbed onto the freshly-treated grids for 1 

min and then blotted with filter paper to remove excess solution. To stain the copolymer 

aggregates, uranyl formate solution (0.75% w/w, 9 μL) was soaked on the sample-loaded grid 

for 20 s and then carefully blotted to remove excess stain. Each grid was then carefully dried 

using a vacuum hose. Imaging was performed using a FEI Tecnai Spirit microscope fitted 

with a Gatan 1kMS600CW CCD camera operating at 80 kV. 

Analytical Centrifugation (LUMiSizer). Droplet size distributions were assessed using a 

LUMiSizer analytical photocentrifuge (LUM GmbH, Berlin, Germany) at 20 °C. 

Measurements were conducted on diluted Pickering nanoemulsions (1.0% v/v n-dodecane) in 

2 mm path length polyamide cells at 400 rpm for 200 profiles (allowing 10 s between 

profiles) and then the rate of centrifugation was increased up to 4000 rpm for a further 800 

profiles. The slow initial rate of centrifugation enabled detection of any larger oil droplets 

that might be present within the nanoemulsion. The LUMiSizer instrument employs space- 

and time-resolved extinction profiles (STEP) technology to measure the intensity of 
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transmitted near-infrared light as a function of time and position over the entire cell length 

simultaneously. The gradual progression of these transmission profiles contains information 

on the rate of creaming of the oil droplets and hence enables assessment of the droplet size 

distribution.  

Small-Angle X-Ray Scattering (SAXS) 

SAXS data were recorded using a laboratory SAXS beamline (Xeuss 2.0, Xenocs, France) 

equipped with a liquid gallium MetalJet X-ray source (Excillum, Sweden) (wavelength λ = 

0.134 nm), two sets of motorized scatterless slits for beam collimation and a Pilatus 1M two-

dimensional pixel SAXS detector (Dectris, Switzerland) (sample-to-detector distance = 1.889 

m). A flow-through glass capillary (2 mm diameter) was connected to an injecting syringe 

and a waste container via plastic tubing and mounted horizontally on the beamline stage; this 

set-up was used as a sample holder. SAXS patterns were recorded using an exposure time of 

600 seconds over a q range of 0.02 nm
-1

 to 1.4 nm
-1

, where q = (4πsinθ)/λ is the length of the 

scattering vector and θ is one-half of the scattering angle. Data were reduced, calibrated and 

integrated using the Foxtrot software package supplied with the instrument and further 

analyzed (background subtraction and data modeling) using Irena SAS macros
74

 for Igor Pro. 

 

RESULTS AND DISCUSSION 

The PGMA48-PTFEMA50 nanoparticles used in this study were prepared by RAFT 

aqueous emulsion polymerization of TFEMA at 10% w/w solids using three different 

PGMA48 precursors in turn (see Figure 1). These precursors were prepared using either 

neutral CPDB, carboxylic acid-functional PETTC or morpholine-functional MPETTC as the 

RAFT agent to confer either neutral, anionic or cationic end-groups, as shown in Figure 1a. 

In each case, the aqueous solution pH was adjusted prior to polymerization to ensure that 

each RAFT end-group remained in its neutral form. An amidine-based azo initiator (VA-044) 
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was used for the synthesis of the (+) PGMA48 precursor, whereas a carboxylic acid-based azo 

initiator (ACVA) was employed for the synthesis of the (-) PGMA48 precursor.  

All three TFEMA polymerizations proceeded to high conversion within 6 h as judged 

by both 
1
H and 

19
F NMR spectroscopy (see Figure S1). The latter technique is particularly 

convenient because 
19

F has 100% abundance and 
19

F NMR spectra do not require deuterated 

solvents. Moreover, unlike 
1
H NMR spectra, 

19
F NMR spectra typically do not suffer from 

overlapping signals. For (0) PGMA48-PTFEMA50 and (+) PGMA48-PTFEMA50 nanoparticles 

DMF GPC analysis indicated an identical Mn of 23 600 g mol
-1

 and relatively low Mw/Mn 

values of 1.12 and 1.16, respectively (see Figure S2). The same technique indicated an Mn of 

29 700 g mol
-1

 and an Mw/Mn of 1.25 for (-) PGMA48-PTFEMA50 nanoparticles. The higher 

Mn value is the result of a high molecular weight shoulder (see the corresponding GPC trace 

shown in Figure S2). Nevertheless, these amphiphilic diblock copolymer chains form well-

defined sterically-stabilized nanoparticles of comparable mean particle diameter (see below). 

Transmission electron microscopy (TEM) images confirmed that well-defined 

spherical nanoparticles were obtained regardless of the nature of the end-group, see Figure 

2a. DLS was used to determine the intensity-average diameters of the three types of 

nanoparticles, which were in good agreement (see Figure 2b). Moreover, the nature of the 

end-group had minimal effect on the mean nanoparticle diameter, which is an important 

parameter for the formation of Pickering nanoemulsions using microfluidization.
25

 As the 

nanoparticle dimensions and chemical compositions are very similar, this enables the effect 

of varying the nature of the end-group on the non-ionic steric stabilizer chains to be examined 

for this model system. 
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Figure 2. (a) Representative TEM images obtained for PGMA48-PTFEMA50 diblock copolymer nanoparticles prepared by 

RAFT aqueous emulsion polymerization of TFEMA, with the PGMA48 precursor block synthesized using either CPDB (0), 

PETTC (-) or MPETTC (+) RAFT agents. (b) Corresponding DLS intensity-average size distributions and (c) Zeta potential 

vs. pH curves obtained for (0) PGMA48-PTFEMA50, (-) PGMA48-PTFEMA50 and (+) PGMA48-PTFEMA50 nanoparticles. 

Measurements are reported for 0.1% w/w copolymer dispersions prepared in the presence of 1 mM KCl. All pH titrations 

were performed from high pH to low pH. The error bars shown for the zeta potential data are equivalent to one standard 

deviation. 

 

 

PGMA48-PTFEMA50 nanoparticles prepared using the PETTC RAFT agent bear 

carboxylic acid end-groups whereas the same nanoparticles prepared using MPETTC bear 

tertiary amine end-groups. Therefore, the solution pH at which the nanoemulsions are 

prepared is expected to influence the Pickering performance of these nanoparticles. Zeta 

potential measurements were performed to examine the effect of varying the solution pH on 

the aqueous electrophoretic behavior of the nanoparticles (Figure 2c). For (0) PGMA48-

PTFEMA50 nanoparticles, a modest change in zeta potential from approximately zero to -12 

mV was observed on raising the solution pH from 3 to 10. This weakly anionic character may 
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indicate the presence of carboxylic acid end-groups on some of the PGMA stabilizer chains 

originating from the ACVA initiator used for their RAFT syntheses. Alternatively, this 

anionic character may simply result from hydroxide ions adsorbing onto the surface of the 

nanoparticles at high pH.
70

 In this context, it is perhaps noteworthy that the zeta potential of 

the (0) PGMA48-PTFEMA50 nanoparticles is comparable to that of (+) PGMA48-PTFEMA50 

nanoparticles at pH 10. 

In contrast, a much more significant change in zeta potential (from approximately 

zero to -25 mV) is observed for the (-) PGMA48-PTFEMA50 nanoparticles within the same 

pH range. The strongly anionic character observed at high pH indicates that the carboxylic 

acid end-groups are fully ionized under such conditions. This is consistent with observations 

reported by Lovett et al. for carboxylic acid-functionalized diblock copolymer worms, which 

underwent a worm-to-sphere transition on raising the solution pH solely as a result of end-

group ionization.
59

 Moreover, acid titration studies of a PETTC-derived (-) PGMA56 macro-

CTA indicated that the pKa of its terminal carboxylic group was approximately 4.7.
59

 This 

suggests that the negative zeta potentials observed for the (-) PGMA48-PTFEMA50 

nanoparticles arise from such anionic end-groups.  

For (+) PGMA48-PTFEMA50 nanoparticles, a significant increase in zeta potential 

from approximately zero to +25 mV occurs on lowering the solution pH from 6 to 3. These 

observations are consistent with aqueous electrophoresis data reported by Penfold et al. for 

morpholine-functionalized PGMA50-PHPMA140 diblock copolymer nano-objects.
61

 The 

cationic zeta potentials observed on lowering the solution pH indicate protonation of the 

terminal morpholine group located on the PGMA50 stabilizer chains, for which acid titration 

studies indicate a conjugate acid pKa of approximately 6.3.
61

 Thus, the aqueous 

electrophoretic behaviour of these three types of diblock copolymer nanoparticles can be 

adjusted simply by changing the solution pH.  
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Figure 3. Schematic representation of the two-step preparation of Pickering nanoemulsions. First, a 7.0 % w/v aqueous 

dispersion of PGMA48-PTFEMA50 nanoparticles at either pH 3 or pH 7 are homogenized with n-dodecane to form an n-

dodecane-in-water Pickering macroemulsion of around 20-30 µm diameter using conventional high-shear homogenisation at 

13 500 rpm for 2 min at 20 °C. This relatively coarse precursor emulsion is then refined via ten passes through a commercial 

LV1 microfluidizer at 20 000 psi to obtain the final Pickering nanoemulsions of approximately 200 nm diameter that are 

used in this study. (See Figure 1 for details of each of the three terminal R groups on the end of the PGMA stabilizer chains). 

 

Initially, 7.0% w/v aqueous dispersions of PGMA48-PTFEMA50 nanoparticles were 

prepared and the solution pH was adjusted to either 3 or 7 using 1 M HCl or NaOH, 

respectively. These dispersions were then used to prepare precursor Pickering 

macroemulsions with a mean droplet diameter of around 20-30 μm via high-shear 

homogenization. Such precursor macroemulsions were then processed using a commercial 

LV1 microfluidizer to produce Pickering nanoemulsions, see Figure 3. The latter step had 

been previously optimized by Thompson and co-workers, who found that a substantial excess 

of PGMA48-PTFEMA50 nanoparticles should be present after formation of the initial 

macroemulsion. This is because these non-adsorbed nanoparticles are required to stabilize the 

additional oil-water interface generated during high-pressure microfluidization.
25

  

Furthermore, it was empirically established that an applied pressure of 20 000 psi was 

optimal for the preparation of stable Pickering nanoemulsions.
25

 Lower pressures led to 

larger, more polydisperse droplets, whereas higher pressures led to in situ dissociation of the 

PGMA48-PTFEMA50 nanoparticles to form individual diblock copolymer chains, which then 

acted as amphiphilic copolymer surfactant to form non-Pickering nanoemulsions.
25

 

TEM images were obtained for dried fresh Pickering nanoemulsions, see Figure 4.  

Although the volatile droplet phase is no longer present under the ultrahigh vacuum 

conditions required for TEM, some of the original superstructure of the adsorbed PGMA48-
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PTFEMA50 nanoparticles is preserved. Such postmortem studies suggest that spherical oil 

droplets with nanoscale dimensions corresponding to that indicated by DLS studies were 

indeed formed when using each of the three nanoparticles as a Pickering emulsifier. It is 

perhaps worth highlighting that no salt was added to these oil-in-water Pickering 

macroemulsions prior to their microfluidization. The hydrodynamic forces generated during 

this processing step are sufficient to form nanoemulsion droplets, despite the presence of 

charged end-groups on the steric stabilizer chains under certain conditions. Moreover, these 

TEM images provide a useful qualitative indication of the adsorption efficiency of these 

nanoparticle emulsifiers when varying the solution pH. More specifically, when the aqueous 

dispersion pH is adjusted to generate either cationic or anionic end-groups, fewer 

nanoparticles are adsorbed at the oil/water interface, so the fraction of free (non-adsorbed) 

nanoparticles increases (compare Figures 4d and 4e with Figures 4c and 4f, respectively). In 

order to confirm that these observations are not simply a drying artefact during the TEM 

sample preparation, nanoparticle adsorption efficiencies were determined quantitatively using 

GPC. In addition, these Pickering nanoemulsions were analyzed by SAXS. 
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Figure 4. Representative TEM images obtained for dried n-dodecane-in-water Pickering nanoemulsions prepared with 7.0% 

w/w PGMA48-PTFEMA50 diblock copolymer nanoparticles synthesized using (a) CPDB at pH 3 (neutral); (b) CPDB at pH 7 

(weakly anionic); (c) PETTC at pH 3 (neutral); (d) PETTC at pH 7 (strongly anionic); (e) MPETTC at pH 3 (strongly 

cationic); (f) MPETTC at pH 7 (neutral). The nanoemulsions were prepared using an LV1 microfluidizer at an applied 

pressure of 20 000 psi for 10 passes.  

 

Table 1 summarizes the intensity-average droplet diameters, nanoparticle adsorption 

efficiencies and zeta potentials determined for freshly-prepared Pickering nanoemulsions 

using each of the three types of nanoparticles at either pH 3 or 7. DLS studies indicate that 

changing the aqueous dispersion pH prior to microfluidization leads to no systematic 
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variation in the initial droplet diameter. However, varying this parameter leads to the steric 

stabilizer chain-ends acquiring charge, which has a significant effect on the nanoparticle 

adsorption efficiency, packing efficiency and zeta potential of the Pickering nanoemulsions. 

For nanoemulsions prepared using (-) PGMA48-PTFEMA nanoparticles, negative zeta 

potentials were obtained regardless of the pH. Thus a zeta potential of -7 mV is observed at 

pH 3 whereas at pH 7 the zeta potential is -48 mV, which is more than twice that of the 

nanoparticles alone at the same pH (–22 mV). This is attributed to the formation of anionic 

carboxylate end-groups on the PGMA steric stabilizer chains. In contrast, the (+) PGMA48-

PTFEMA50-stabilized nanoemulsion exhibits minimal anionic character (-6 mV) at pH 7, 

whereas the zeta potential is strongly cationic (+27 mV) at pH 3 owing to protonation of the 

morpholine end-groups. This value is comparable to that exhibited by the (+) PGMA48-

PTFEMA50 nanoparticles alone at the same pH (+24 mV). 

 

Table 1. Summary of the Pickering nanoemulsions prepared using either (0) PGMA48-PTFEMA50, (-) PGMA48-

PTFEMA50 or (+) PGMA48-PTFEMA50 diblock copolymer nanoparticles at either pH 3 or 7. 

End-

group 

type 

pH 3  pH 7  

DLS 

droplet 

diameter 

/ nm 

Adsorption 

efficiency / 

% 

Packing 

efficiency 

/ % 

Zeta 

potential 

/ mV 

DLS 

droplet 

diameter 

/ nm 

Adsorption 

efficiency / 

% 

Packing 

efficiency 

/ % 

Zeta 

potential 

/ mV 

Neutral 197 ± 56 93 49 0 ± 3 200 ± 72 90 47 -14 ± 4 

Anionic 215 ± 74 90 52 -7 ± 4 212 ± 60 49 27 -48 ± 5 

Cationic 198 ± 56 63 33 +27 ± 4 204 ± 61 93 50 -6 ± 5 

 

The effect of varying the solution pH on the nanoparticle adsorption efficiency was 

assessed by GPC using a UV detector, see Table 1. Analysis of UV chromatograms recorded 

after serial dilution of the original aqueous nanoparticle dispersions enabled construction of a 

calibration plot of integrated UV signal against copolymer concentration at a wavelength of 

298 nm (see Figure S3). This linear plot was used to quantify the concentration of non-

adsorbed nanoparticles remaining in the aqueous phase after microfluidization (after using 
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centrifugation to remove the creamed oil droplets) and the extent of nanoparticle adsorption 

was calculated by difference. TEM studies suggest that there are far more non-adsorbed 

nanoparticles present in the aqueous phase when the nanoemulsion is prepared at pH 7 using 

(-) PGMA48-PTFEMA50 compared to the other two types of nanoparticles. This suggests that 

anionic end-groups reduce the extent of nanoparticle adsorption at the oil-water interface, 

which is in agreement with the nanoparticle adsorption efficiency determined using UV GPC. 

In a complementary experiment, the solution pH of each 7% w/w aqueous dispersion of 

nanoparticles was adjusted to pH 3 prior to homogenization. In this case, the adsorption 

efficiency of the (0) PGMA48-PTFEMA50 nanoparticles remained almost unchanged, whereas 

that of the carboxylic acid-functionalized (-) PGMA48-PTFEMA50 nanoparticles increased 

significantly from 49 % to 90 %. On the other hand, the efficiency of the morpholine-

functionalized (+) PGMA48-PTFEMA50 nanoparticles was substantially reduced from 93 % to 

63 %. Thus the introduction of surface charge clearly hinders efficient nanoparticle 

adsorption at the oil/water interface. It has been previously reported that both anionic
66-67, 71

 

and cationic
67

 particles can be excluded from the oil/water interface owing to strong inter-

particle repulsion, image charge effects,
67

 and, in the case of anionic particles, like charges at 

the oil/water interface.
71

 However, interfacial adsorption can be achieved by either adjusting 

the solution pH or increasing the ionic strength to suppress surface charge. In the current 

study, fewer nanoparticles are adsorbed at the oil/water interface during microfluidization if 

they possess cationic or anionic end-groups. This is because charged nanoparticles are more 

hydrophilic and thus are less strongly adsorbed at the oil/water interface.  

 As previously described, there is no discernible change in the intensity-average 

diameter of nanoemulsions at either pH 3 or 7. However, the nanoparticle adsorption 

efficiency differs significantly under such conditions. Since the volume of the oil phase is 
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equal in each case, this implies substantial differences in the nanoparticle packing efficiency 

at the surface of the oil droplets.  

 
Figure 5. Volume-weighted cumulative size distributions determined by analytical centrifugation (LUMiSizer instrument) 

obtained for n-dodecane-in-water nanoemulsions prepared with 7.0% w/w PGMA48-PTFEMA50 diblock copolymer 

nanoparticles synthesized using: (a) CPDB (0), (b) PETTC (-) or (c) MPETTC (+) as the RAFT agent. Microfluidization 

conditions: applied pressure = 20 000 psi, ten passes and a solution pH of either 3 or 7. 
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Figure 5 shows volume-average cumulative size distributions recorded for each of the 

freshly-made nanoemulsions prepared at either pH 3 or 7, as determined by analytical 

centrifugation. In contrast to the intensity-average size distributions reported by DLS, there 

are clear differences in size for Pickering nanoemulsions prepared at pH 3 and pH 7. As 

noted by Thompson and co-workers, analytical centrifugation has a much higher resolution 

compared to DLS because droplet fractionation occurs prior to detection.
27

 However, one 

drawback of the former technique is that the effective particle density is required to obtain an 

accurate particle size.
45

 This parameter was estimated to be 0.81 g cm
-3 

for a PGMA48-

PTFEMA50 stabilized n-dodecane-in-water nanoemulsion. This value is higher than that of n-

dodecane (0.75 g cm
-3

) because the nanoparticle density is 1.15 g cm
-3

, as previously 

determined by Akpinar and co-workers.
45

 Moreover, undersizing can be observed if the 

droplet concentration is too high owing to the phenomenon of hindered creaming.
27, 75

 

However, using droplet concentrations that are too low is also problematic: such dilute 

emulsions scatter light only rather weakly and hence fall outside of the optimum transmission 

range required for the LUMiSizer instrument (i.e. below 30 % transmission). Given these 

conflicting requirements, a droplet concentration of 1.0% v/v was found to be optimum.
25

 In 

the current study, this concentration was used for all analytical centrifugation measurements. 

A further complication for this sizing technique is that a density distribution is superimposed 

on the droplet size distribution, as discussed by Thompson and co-workers.
27

 Overall, this 

means that analytical centrifugation is best utilized for monitoring relative changes in the 

droplet size distribution during long-term ageing of these Pickering nanoemulsions, rather 

than for determining absolute droplet diameters. 

The volume-average cumulative size distributions shown in Figure 5 demonstrate that 

Pickering nanoemulsions prepared using nanoparticles that possess charged end-groups leads 
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to the formation of larger, more polydisperse droplets. For example, nanoemulsions prepared 

using (-) PGMA48-PTFEMA50 nanoparticles exhibited an initial volume-average droplet 

diameter of 159 ± 54 nm at pH 3, whereas nanoemulsions prepared using the same 

nanoparticles at pH 7 had a significantly larger droplet diameter of 218 ± 169 nm. This size 

difference can be correlated with the substantially different nanoparticle adsorption 

efficiencies noted above. More specifically, only 49% of the (-) PGMA48-PTFEMA50 

nanoparticles are adsorbed on the surface of the oil droplets at pH 7 compared to 90% at pH 

3. Because there are far fewer nanoparticles adsorbed at the oil/water interface at pH 7, only 

relatively large oil droplets can be stabilized at the same copolymer concentration. A similar 

effect is observed for (+) PGMA48-PTFEMA50 nanoparticles. Protonation of the morpholine 

end-groups at pH 3 leads to a 30% reduction in nanoparticle adsorption efficiency compared 

to the neutral form of such nanoparticles at pH 7. Thus interfacial adsorption of the 

nanoparticles is again suppressed, despite the favourable electrostatic attraction between the 

cationic nanoparticles and the anionic oil/water interface. These results demonstrate the 

importance of the choice of RAFT agent (which dictates the nature of the stabilizer end-

groups) when designing diblock copolymer nanoparticles for use as Pickering emulsifiers.  
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Figure 6. Experimental SAXS patterns (circles) and calculated data fits (white lines) obtained for 1.0% v/v 

nanoemulsions prepared using (a) CPDB at pH 3 (neutral nanoparticles); (b) CPDB at pH 7 (weakly anionic nanoparticles); 

(c) PETTC at pH 3 (neutral nanoparticles); (d) PETTC at pH 7 (strongly anionic nanoparticles); (e) MPETTC at pH 3 

(strongly cationic nanoparticles); (f) MPETTC at pH 7 (neutral nanoparticles). Each nanoemulsion was prepared using an 

LV1 microfluidizer at an applied pressure of 20 000 psi for ten passes. The two-population core-shell structural model used 

for the SAXS analysis of such Pickering nanoemulsions comprises large oil droplet cores coated with a layer (or shell) of 

adsorbed spherical nanoparticles. 
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TEM studies suggest that these Pickering nanoemulsions possess a core-shell 

morphology with a particulate shell. However, this technique cannot be used to assess the 

surface coverage of the n-dodecane droplets by the adsorbed layer of nanoparticles. Prior 

studies indicate that scattering techniques should provide useful information in this context.
76

 

Thus, SAXS patterns were recorded for freshly-prepared Pickering nanoemulsions after 

dilution to 1.0% v/v (Figure 6). Following our prior study of the characterization of core-shell 

nanocomposite particles comprising polymer latex cores and particulate silica shells,
77

 the 

SAXS data were analyzed using a two-population model.  Population 1 of the model is 

represented by core-shell spheres, where the cores comprise the oil droplets and the adsorbed 

layer of nanoparticles form the shell. The particulate nature of the shell is described by small 

homogeneous spheres corresponding to population 2. First, SAXS patterns recorded for the 

nanoparticles alone (see Figure S4) were fitted using a spherical form factor
78

. The resulting 

mean particle radius (Rs) and its associated standard deviation (σs) (Table 2) were consistent 

with those obtained by DLS and TEM studies (Figure 2). These two parameters were 

subsequently fixed when fitting the SAXS patterns of the Pickering nanoemulsions using the 

two-population model (see Table 2). The scattering length density for each component of the 

Pickering nanoemulsions [oil core (ξc), particulate shell (ξshell) and surrounding liquid 

(ξsolvent)] was calculated based on their respective known chemical compositions and mass 

densities (Table 2). These three parameters were also fixed for the subsequent SAXS data 

fitting. The packing efficiency for the nanoparticles within the particulate shell surrounding 

the oil droplets was included in such calculations (see Table 3). The structure of these 

Pickering nanoemulsions can be described by the mean core radius (Rc) and its standard 

deviation (σc), the mean shell thickness (Ts), and two scaling factors (for  the core-shell 

particles and the copolymer nanoparticles, respectively). These five parameters were allowed 

to vary during fitting the SAXS data. 
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 SAXS patterns for the nanoemulsions comprised three distinct regions: (i) relatively 

intense scattering at low q arising from the nanoemulsion droplets (where close inspection 

reveals a subtle change in gradient at low q, indicating cross-over from the Porod region to 

the Guinier region); (ii) additional scattering intensity at intermediate q corresponding to the 

copolymer nanoparticle form factor (Figure S4) and (iii) relatively weak scattering at high q, 

which is most likely associated with thermal fluctuations in the oil density and copolymer 

components (accordingly, constant background scattering has been incorporated into the 

model to account for this feature). The two-population model produced a reasonably good fit 

to the experimental SAXS pattern obtained for each Pickering nanoemulsion. The lack of 

well-defined minima in these scattering curves suggests that the nanoemulsion droplets are 

somewhat polydisperse in terms of their size, which is consistent with TEM and DLS studies.  

Mean droplet radii calculated using the two-population model (Table 2) were consistent with 

those reported by DLS and analytical centrifugation (Table 1 and Figure 5, respectively). 

However, these values are not particularly accurate owing to our laboratory-based SAXS 

instrument, which has limited resolution at low q. The mean apparent thickness of the shell of 

adsorbed nanoparticles calculated for these Pickering nanoemulsions was approximately 12-

15 nm in each case, which is less than the mean diameter of an individual nanoparticle (~ 22 

nm, Table 2). This is reasonably consistent with the relatively low surface coverage of the oil 

droplets by the nanoparticles, which exhibit packing efficiencies of 27-52% (Table 1). 

Furthermore, Ts varied with solution pH for the Pickering nanoemulsions prepared with (-) 

and (+) PGMA48-PTFEMA50 nanoparticles (Table 2). For example, Ts was calculated to be 

11.9 nm for nanoemulsions prepared using (-) PGMA48-PTFEMA50 nanoparticles at pH 7, 

whereas those prepared using the same nanoparticles at pH 3 had a significantly thicker shell 

of 14.7 nm. This is consistent with a higher packing efficiency under the latter conditions, 

when the nanoparticles are in their neutral form (Table 1). In contrast, Ts decreases for the (+) 
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PGMA48-PTFEMA50 nanoparticles on switching from pH 7 to pH 3 (Table 2). In contrast, the 

Ts values determined for Pickering nanoemulsions stabilized using the neutral nanoparticles 

are essentially independent of solution pH, indicating no significant change in the 

nanoparticle packing efficiency under such conditions.  

 

Table 2. Structural parameters obtained by SAXS analysis of 1.0% v/v Pickering nanoemulsions comprising n-dodecane 

droplets prepared using either neutral PGMA48-PTFEMA50, anionic PGMA48-PTFEMA50 or cationic PGMA48-PTFEMA50 

nanoparticles at either pH 3 or pH 7.a 

End-group 

type 

pH 3 pH 7 

Rc / nm σc / nm Ts / nm 

ξshell x 1010  

cm-2 Rc / nm σc / nm Ts / nm 

ξshell x 1010  

cm-2 

Neutral 127 41 14.9 10.85 118 35 14.4 10.79 

Anionic 104 41 14.7 10.93 94 36 11.9 10.21 

Cationic 162 47 12.2 10.38 128 32 14.2 10.88 

aRc = mean core radius; σc = standard deviation of the core radius; Ts = mean shell thickness; ξshell = effective scattering length density of the 

particulate shell; Rs = copolymer nanoparticle radius, σs = standard deviation of the copolymer nanoparticle radius. Parameters used for 

modeling are as follows: ξsolvent = 9.42 x 1010 cm-2; ξc = 7.32 x 1010 cm-2; neutral Rs = 10.7 nm, σs = 1.3; anionic Rs  = 11.4 nm, σs = 2.5 , 

cationic Rs  = 11.4 nm, σs  = 2.5. The ξshell was calculated by averaging the scattering length densities of the PGMA stabilizer block (11.94 x 

1010 cm-2), the PTFEMA core-forming block (12.76 x 1010 cm-2) and the solvent (water) based on the copolymer composition and packing 

efficiency of the copolymer nanoparticles on the oil droplets. 

To examine the effect of the stabilizer end-groups on the long-term stability of the 

nanoemulsions, analytical centrifugation was used to determine the mean droplet size after 

ageing for both one week and six weeks at 20 °C. Volume-weighted cumulative size 

distributions for freshly-made and one-week-old nanoemulsions at pH 7 and pH 3 are shown 

in Figure 7. Nanoemulsions stabilized by nanoparticles with anionic or cationic end-groups 

(see Figure 7b and 7c) displayed the greatest rate of droplet growth within one week.  



26 

 

 

Figure 7. Volume-weighted cumulative size distributions determined by analytical centrifugation (LUMiSizer instrument) 

for fresh (solid line) and aged (for one week at 20 °C, dashed line) n-dodecane-in-water Pickering nanoemulsions prepared 

using 7.0% w/w PGMA48-PTFEMA50 diblock copolymer nanoparticles synthesized with the following RAFT agents: (a) 

PETTC, aged at pH 3; (b) PETTC, aged at pH 7; (c) MPETTC, aged at pH 3; (d) MPETTC, aged at pH 7. Microfluidizer 

conditions: 20 000 psi; ten passes 

 

The droplet size distributions of such aged nanoemulsions are relatively unimodal. In 

contrast, nanoemulsions stabilized by nanoparticles prepared with neutral end-groups (see 

Figures 6a and 6d) possess distinctly bimodal size distributions after ageing for one week, 

with the minor population corresponding to the original droplets. The extent of Ostwald 

ripening is similar for nanoemulsions stabilized by either (+) PGMA48-PTFEMA50 or (-) 

PGMA48-PTFEMA50: around 60% of the oil droplets exceed approximately 500 nm after 

ageing for one week at 20 °C. As shown above, using neutral nanoparticles as Pickering 

emulsifiers leads to adsorption efficiencies of around 90%. According to UV GPC studies, 

the nanoparticle adsorption efficiency for the charged nanoparticles is significantly lower 

than that for the corresponding neutral nanoparticles. Moreover, a somewhat lower droplet 

surface coverage is anticipated in the former case because of lateral electrostatic repulsion 

between neighbouring adsorbed nanoparticles: this is also expected to facilitate faster droplet 

growth via coalescence.
79

 In practice, the calculated packing efficiencies for anionic or 
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cationic nanoparticles adsorbed onto the oil droplets are 27% or 33% respectively, which are 

significantly lower than those observed for the adsorbed neutral nanoparticles (~ 47-49%) 

(Table 1). Such lower surface coverages mean that the adsorbed layers of charged 

nanoparticles provide a somewhat less effective barrier against n-dodecane diffusion into the 

aqueous phase.
31

 Thus, the corresponding nanoemulsions exhibit inferior long-term stability 

with respect to droplet coalescence.
69, 80-81

 Similar observations have been reported in the 

literature for surfactant-stabilized nanoemulsions.
82

 Analytical centrifugation studies of the 

evolution of droplet size distributions over time enables both the extent and mechanism of 

droplet growth to be assessed. According to the literature, it is generally accepted that the 

main destabilization mechanism for nanoemulsions is Ostwald ripening,
24-25, 27, 31, 40-41

 which 

is characterized by a linear increase in the cube of the mean droplet radius over time.
83-84

 

Analytical centrifugation was used to monitor droplet coarsening over time for the Pickering 

nanoemulsion prepared using the (-) PGMA48-PTFEMA50 nanoparticles. This technique 

indicated that the initial unimodal droplet size distribution gradually developed bimodal 

character. Nevertheless, a linear relationship was observed when plotting the cube of the 

volume-average droplet radius against ageing time at either pH 3 or pH 7 (see Figure S5), 

which is consistent with the expected Ostwald ripening mechanism.  

 

Table 3. Variation in Mean Droplet Diameter with Ageing Time as Determined by Analytical Centrifugation for 

Pickering Nanoemulsions Stabilized using Nanoparticles with either Neutral, Anionic or Cationic End-Groups  

End-group 

type 

Mean droplet diameter determined by analytical centrifugation (nm) 

pH 3 pH 7 

fresh 1 week 6 weeks fresh 1 week 6 weeks 

Neutral 176 ± 130 177 ± 142 177 ± 419 207 ± 162 208 ± 314 184 ± 411  

Anionic 159 ± 108 292 ± 425 868 ± 1326 218 ± 169 1005 ± 524 2017 ± 886 

Cationic 171 ± 136 1283 ± 1691 1937 ± 2938 140 ± 118 257 ± 500 323 ± 1246 
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Table 3 reports the mean volume-average droplet diameter determined by analytical 

centrifugation for Pickering nanoemulsions prepared using each of the three types of 

nanoparticles after ageing for up to six weeks at 20 °C. In each case, there is evidence for 

Ostwald ripening but nanoemulsions prepared using nanoparticles bearing charged end-

groups undergo substantially greater ripening compared to those prepared using 

approximately neutral nanoparticles. Nanoparticles prepared using the CPDB RAFT agent 

formed the most stable nanoemulsions: the mean droplet diameter actually remains roughly 

constant but the width of the size distribution increases significantly. Nanoemulsions 

prepared using (+) PGMA48-PTFEMA50
 
nanoparticles at pH 3 grew from 171 ± 135 µm to 

1937 ± 2938 µm, whereas the mean droplet diameter only increased from 140 ± 118 µm to 

323 ± 1246 µm at pH 7. Perhaps surprisingly, nanoemulsions prepared using the (-) PGMA48-

PTFEMA50 nanoparticles proved to be relatively unstable with respect to ageing regardless of 

the solution pH. Overall, it is clear that using charged nanoparticles as Pickering emulsifiers 

produces nanoemulsions with inferior long-term stability. Interestingly, the nanoemulsion 

zeta potential cannot be used to reliably predict the long-term stability of such Pickering 

nanoemulsions.  

  

 

CONCLUSIONS 

The effect of charged end-groups on the formation and long-term stability of Pickering 

nanoemulsions has been explored using model sterically-stabilized diblock copolymer 

nanoparticles prepared by polymerization-induced self-assembly. More specifically, such 

nanoparticles were prepared by chain-extending a water-soluble non-ionic PGMA48 precursor 

via RAFT aqueous emulsion polymerization of TFEMA to produce well-defined spherical 

nanoparticles of approximately 20 nm diameter in each case, as judged by DLS, TEM and 
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SAXS studies. Aqueous electrophoresis studies indicated that nanoparticles prepared using 

PGMA chains with a terminal carboxylic acid end-group displayed strong anionic character 

at pH 7, whereas those containing a terminal tertiary amine end-group exhibited strong 

cationic character at pH 3. On the other hand, nanoparticles prepared using a neutral RAFT 

agent displayed only weakly anionic character at pH 7, most likely owing to hydroxide ion 

adsorption. These three types of sterically-stabilized nanoparticles were used in turn to 

prepare n-dodecane-in-water nanoemulsions via high-pressure microfluidization at either pH 

3 or pH 7. DLS studies confirmed that mean droplet diameters of approximately 200 nm can 

be readily obtained. TEM studies indicated that the nanoparticle superstructure remained 

intact on drying, thus providing evidence for the Pickering nature of these nanoemulsions. 

Mean droplet diameters obtained for the fresh nanoemulsions using analytical centrifugation 

were all equal to or less than 200 nm. UV GPC analysis of the aqueous phase enabled 

quantification of the excess non-adsorbed nanoparticles. In the absence of any charged end-

groups, the nanoparticle adsorption efficiency was calculated to be approximately 90%. 

However, the presence of charged end-groups significantly reduced the nanoparticle 

adsorption efficiency because electrostatic repulsions between neighboring copolymer 

nanoparticles suppresses their interfacial adsorption and reduces their packing efficiency at 

the oil-water interface. This was confirmed by analyzing SAXS patterns recorded for the 

Pickering nanoemulsions using a two-population model. Furthermore, long-term stability 

studies using analytical centrifugation revealed significantly faster droplet coarsening via 

Ostwald ripening for the latter Pickering nanoemulsions compared to those prepared using 

neutral nanoparticles under comparable conditions. This was attributed to the lower packing 

efficiencies for oil droplets stabilized by nanoparticles bearing charged end-groups compared 

to those observed for neutral nanoparticles. 

ASSOCIATED CONTENT 
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F NMR spectra recorded for PGMA48-PTFEMA50 diblock copolymers; gel 

permeation chromatograms recorded for PGMA48-PTFEMA50 diblock copolymers; UV GPC 

calibration plot constructed for PGMA48-PTFEMA50 diblock copolymers bearing either 

neutral, carboxylic acid or tertiary amine end-groups; small-angle X-ray scattering patterns 

constructed for PGMA48-PTFEMA50 diblock copolymers bearing either neutral, carboxylic 

acid or tertiary amine end-groups at either pH 3 or 7; analytical centrifugation data recorded 

for one of the aged nanoemulsions. 

 

This material is available free of charge via the Internet at http//:pubs.acs.org. 
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