423 research outputs found

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α

    Get PDF
    Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al

    Leptospira interrogans Stably Infects Zebrafish Embryos, Altering Phagocyte Behavior and Homing to Specific Tissues

    Get PDF
    Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil's syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically transparent, allowing direct visualization of host–pathogen interactions from the moment of infection. We observed rapid uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours, clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues

    Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    Get PDF
    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines

    Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice

    Get PDF
    BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes

    Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Drosophila Genome

    Get PDF
    Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control

    Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability

    Get PDF
    Recent whole genome polymerase binding assays in the Drosophila embryo have shown that a substantial proportion of uninduced genes have pre-assembled RNA polymerase-II transcription initiation complex (PIC) bound to their promoters. These constitute a subset of promoter proximally paused genes for which mRNA elongation instead of promoter access is regulated. This difference can be described as a rearrangement of the regulatory topology to control the downstream transcriptional process of elongation rather than the upstream transcriptional initiation event. It has been shown experimentally that genes with the former mode of regulation tend to induce faster and more synchronously, and that promoter-proximal pausing is observed mainly in metazoans, in accord with a posited impact on synchrony. However, it has not been shown whether or not it is the change in the regulated step per se that is causal. We investigate this question by proposing and analyzing a continuous-time Markov chain model of PIC assembly regulated at one of two steps: initial polymerase association with DNA, or release from a paused, transcribing state. Our analysis demonstrates that, over a wide range of physical parameters, increased speed and synchrony are functional consequences of elongation control. Further, we make new predictions about the effect of elongation regulation on the consistent control of total transcript number between cells. We also identify which elements in the transcription induction pathway are most sensitive to molecular noise and thus possibly the most evolutionarily constrained. Our methods produce symbolic expressions for quantities of interest with reasonable computational effort and they can be used to explore the interplay between interaction topology and molecular noise in a broader class of biochemical networks. We provide general-purpose code implementing these methods

    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    Get PDF
    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level

    Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway

    Get PDF
    Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment requires activity of the cellular RNA-directed RNA polymerase, EGO-1. Here we use genetic mutation, RNA interference, immunofluorescence microscopy, fluorescence in situ hybridization, and molecular cloning methods to identify and analyze three additional regulators of meiotic H3K9me2 distribution: CSR-1 (a Piwi/PAZ/Argonaute protein), EKL-1 (a Tudor domain protein), and DRH-3 (a DEAH/D-box helicase). In csr-1, ekl-1, and drh-3 mutant males, we observed a reduction in H3K9me2 accumulation on the unpaired X chromosome and an increase in H3K9me2 accumulation on paired autosomes relative to controls. We observed a similar shift in H3K9me2 pattern in hermaphrodites that carry unpaired chromosomes. Based on several assays, we conclude that ectopic H3K9me2 accumulates on paired and synapsed chromosomes in these mutants. We propose alternative models for how a small RNA-mediated pathway may regulate H3K9me2 accumulation during meiosis. We also describe the germline phenotypes of csr-1, ekl-1, and drh-3 mutants. Our genetic data suggest that these factors, together with EGO-1, participate in a regulatory network to promote diverse aspects of development

    High Diversity at PRDM9 in Chimpanzees and Bonobos

    Get PDF
    BACKGROUND: The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos. METHODOLOGY/PRINCIPAL FINDINGS: PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding. CONCLUSIONS AND SIGNIFICANCE: The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility
    • …
    corecore