11 research outputs found

    Multiwavelength observations of the black hole transient Swift J1745-26 during the outburst decay

    Get PDF
    We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phenomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient quality to characterize cut-offs during the decay for typical hard X-ray fluxes. Long INTEGRAL monitoring observations are required to understand the relation between the compact jet formation and hard X-ray behavior. We found that for the entire decay (including the flare), the X-ray spectra are consistent with thermal Comptonization, but a jet synchrotron origin cannot be ruled out.Comment: Accepted for publication by MNRA

    Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in BHXRBs

    Get PDF
    Transient black-hole X-ray binaries viewed at high inclinations display blue-shifted absorption lines in their X-ray spectra. These features are the signatures of powerful, hot and equatorial accretion disk winds being driven from these systems in their luminous soft states. Remarkably, blue-shifted absorption lines have recently also been discovered in optical and NIR recombination lines and ultraviolet resonance features. These features must also be produced in an outflow, but the physical conditions traced by these outflows are different. Despite this, the characteristic Doppler velocities of all three types of signatures are comparable, yet they have never been observed simultaneously. It is therefore completely unclear if they are associated with distinct outflows (e.g. driven by different mechanisms) or simply with different regions/phases within the same outflow. Here, we propose to answer this question by carrying out simultaneous time-resolved spectroscopy of a high-inclination system in the X-ray, ultraviolet and optical bands, in its two distinct physical configurations (hard- and soft-states). This will allow us to test if the three types of wind features are present simultaneously, and, if so, whether they display correlated variability and/or velocity structure

    Spectral and timing evolution of the bright failed outburst of the transient black hole Swift J174510.8-262411

    Get PDF
    We studied time variability and spectral evolution of the Galactic black hole transient Swift J174510.8-262411 during the first phase of its outburst. INTEGRAL and Swift observations collected from 2012 September 16 until October 30 have been used. The total squared fractional rms values did not drop below 5% and QPOs, when present, were type-C, indicating that the source never made the transition to the soft-intermediate state. Even though the source was very bright (up to 1 Crab in hard X-rays), it showed a so called failed outburst as it never reached the soft state. XRT and IBIS broad band spectra, well represented by a hybrid thermal/non-thermalComptonisationmodel, showed physical parameters characteristic of the hard and intermediate states. In particular, the derived temperature of the geometrically thin disc black body was about 0.6 keV at maximum.We found a clear decline of the optical depth of the corona electrons (close to values of 0.1), as well as of the total compactness ratio lh/ls. The hard-to-hard/intermediate state spectral transition is mainly driven by the increase in the soft photon flux in the corona, rather than small variations of the electron heating. This, associated with the increasing of the disc temperature, is consistent with a disc moving towards the compact object scenario, i.e. the truncated-disc model. Moreover, this scenario is consistent with the decreasing fractional squared rms and increasing of the noise and QPO frequency. In our final group of observations, we found that the contribution from the non-thermal Comptonisation to the total power supplied to the plasma is 0.59+0.02/-0.05 and that the thermal electrons cool to kTe<26 keV

    First light with HiPERCAM on the GTC

    Get PDF
    HiPERCAM is a quintuple-beam imager that saw first light on the 4.2 m William Herschel Telescope (WHT) in October 2017 and on the 10.4 m Gran Telescopio Canarias (GTC) in February 2018. The instrument uses re- imaging optics and 4 dichroic beamsplitters to record ugriz (300–1000 nm) images simultaneously on its five CCD cameras. The detectors in HiPERCAM are frame-transfer devices cooled thermo-electrically to 90°C, thereby allowing both long-exposure, deep imaging of faint targets, as well as high-speed (over 1000 windowed frames per second) imaging of rapidly varying targets. In this paper, we report on the as-built design of HiPERCAM, its first-light performance on the GTC, and some of the planned future enhancements
    corecore