Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in BHXRBs

Castro Segura, Noel; Altamirano, Diego; Buisson, Douglas; Degenaar, Nathalie; Diaz Trigo, Maria; Fender, Rob; Higginbottom, Nick; Knigge, Christian; Long, Knox S.; Matthews, James

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Castro Segura, N., Altamirano, D., Buisson, D., Degenaar, N., Diaz Trigo, M., Fender, R., Higginbottom, N., Knigge, C., Long, K. S., Matthews, J., Mendez, M., Munoz Darias, T., \& Vincentelli, F. (2020, Dec 1). Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in BHXRBs.
http://adsabs.harvard.edu/abs/2020hst..prop16489C

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

16489 - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in BHXRBs

Cycle: 28, Proposal Category: GO
(Availability Mode: SUPPORTED)

INVESTIGATORS

Name	Institution	E-Mail
Mr. Noel Castro Segura (PI) (ESA Member) (Co ntact)	University of Southampton	n.castro-segura@soton.ac.uk
Dr. Diego Altamirano (CoI) (ESA Member)	University of Southampton	d.altamirano@soton.ac.uk
Prof. Christian Knigge (CoI) (ESA Member)	University of Southampton	c.knigge@soton.ac.uk
Dr. Maria Diaz Trigo (CoI) (ESA Member)	European Southern Observatory - Germany	mdiaztri@eso.org
Dr. Nathalie Degenaar (CoI) (ESA Member)	Universiteit van Amsterdam	degenaar@uva.nl
Mariano Mendez (CoI) (ESA Member)	Kapteyn Astronomical Institute	mariano@astro.rug.nl
Dr. Teo Munoz Darias (CoI) (ESA Member)	Instituto de Astrofisica de Canarias	teo.munoz-darias@iac.es
Prof. Rob Fender (CoI) (ESA Member)	University of Oxford	rob.fender@astro.ox.ac.uk
Federico Vincentelli (CoI) (ESA Member)	UNIVERSITA DEGLI STUDI DELL'INSUBRIA	vincentelli.fm@gmail.com
Dr. Knox S. Long (CoI) (AdminUSPI)	Eureka Scientific Inc.	long@stsci.edu
Mr. Douglas Buisson (CoI) (ESA Member)	University of Cambridge	djkb2@ast.cam.ac.uk
Dr. Nick Higginbottom (CoI) (ESA Member)	University of Southampton	nick_higginbottom@fastmail.fm
Dr. James Matthews (CoI) (ESA Member)	University of Cambridge	matthews@ast.cam.ac.uk

VISITS

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
01	(1) BHXRB-CANDIDATE	COS/FUV COS/NUV	3	$15-M a r-202117: 00: 47.0$	yes

Proposal 16489 (STScl Edit Number: 0, Created: Monday, March 15, 2021 at 4:00:51 PM Eastern Standard Time) - Overview

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?		
02	(1) BHXRB-CANDIDATE	COS/FUV COS/NUV	3	$15-M a r-2021$ 17:00:48.0	yes		
03	(1) BHXRB-CANDIDATE	COS/FUV COS/NUV	COS/FUV COS/NUV	3	$15-M a r-202117: 00: 49.0$	$⿻$	yes
:---							
04							
(1) BHXRB-CANDIDATE							

12 Total Orbits Used

ABSTRACT

Transient black-hole X-ray binaries viewed at high inclinations display blue-shifted absorption lines in their X-ray spectra. These features are the signatures of powerful, hot and equatorial accretion disk winds being driven from these systems in their luminous soft states. Remarkably, blueshifted absorption lines have recently also been discovered in optical and NIR recombination lines and ultraviolet resonance features. These features must also be produced in an outflow, but the physical conditions traced by these outflows are different. Despite this, the characteristic Doppler velocities of all three types of signatures are comparable, yet they have never been observed simultaneously. It is therefore completely unclear if they are associated with distinct outflows (e.g. driven by different mechanisms) or simply with different regions/phases within the same outflow. Here, we propose to answer this question by carrying out simultaneous time-resolved spectroscopy of a high-inclination system in the X-ray, ultraviolet and optical bands, in its two distinct physical configurations (hard- and soft-states). This will allow us to test if the three types of wind features are present simultaneously, and, if so, whether they display correlated variability and/or velocity structure.

OBSERVING DESCRIPTION

We will observe LMXRB in the hard and soft states coordinated with XMM-Newton. Ideally we will have 3 visits, at the begining and end of the XMM exposure, in order to swarch for simultaneous accretion disk winds in the X-ray and FUV.

Given the unknown UV luminosity of the transient I am leaving different observing strategies in this mock phase II.

Once we have a suitable target I will update all this carefully.

Proposal 16489 (STScl Edit Number: 0, Created: Monday, March 15, 2021 at 4:00:51 PM Eastern Standard Time) - Overview
For now the target is Swift J 1858 which is a transient where we triggered similar programs during the past two cycles.

$\frac{\pi}{5}$	Proposal 16489, 3orbits COS-FUV G140L template (01), implementation Diagnostic Status: Warning Scientific Instruments: COS/FUV, COS/NUV Special Requirements: SCHED 100\%; ON HOLD Comments: This template has 3 orbits with the different FP-POS spaning all the orbits in order to optimize the exposure time On Hold Comments: ToO				Mon Mar 15 21:00:51 GMT 2021	
或	(3orbits COS-FUV G140L template (01)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN (3orbits COS-FUV G140L template (01)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN					
	\# Name Criteria		Description			
	(1) BHXRB-CANDIDATE X-Ray Transient Comments: This is a dummy test		ACCRETION DISK EJECTA WIND X-RAY NOVAE X-RAY TRANSIENT			
	\#Label (ETC Run) Target \quad Config,Mode,Aperture	Spectral Els.	Opt. Params. Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
		MIRRORA			60 Secs (60 Secs) $[==>]$	[1]
	2 SCI (COS.sp. 141 6844) (1) BATERB-CANDI COS/FUV, TIME-TAG, PSA 	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME }=10 \\ & 00 ; \\ & \text { FP-POS }=1 \\ & \hline \end{aligned}$		2000 Secs (2086 Secs)	[1]
	3 SCI (COS.sp. 141 6844) (1) BHXXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \hline \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	BUFFER-TIME $=10$ 00; FP-POS=2		2500 Secs (2466 Secs) [=> 2466.0 Secs]	[2]
	4 SCI (COS.sp. 141 6844) (1) BHXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=13 } \\ & 00 ; \\ & \text { FP-POS=3 } \\ & \hline \end{aligned}$		1400 Secs (1310 Secs) [=>1310.0 Secs $]$	[3]
	5 SCI (COS.sp. 141 (1) BATE 6844 DARB-CANDI COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=15 } \\ & 00 ; \\ & \text { FP-POS=4 } \end{aligned}$		1051 Secs (961 Secs)	[3]

Proposal 16489-3orbits COS-FUV G140L template (01) - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in

Orbit 1

Server Version: 20200619

Orbit 2
Server Version: 20200619

GS Reacq

Orbit Structure

Occultation
** ORBITAL VISIBILITY OVERRUN $=4$

Orbit 3
Server Version: 20200619

$\frac{\pi}{5}$	Proposal 16489, 3orbits COS-FUV G140L template (02), implementation Diagnostic Status: Warning Scientific Instruments: COS/FUV, COS/NUV Special Requirements: SCHED 100\%; ON HOLD Comments: This template has 3 orbits with the different FP-POS spaning all the orbits in order to optimize the exposure time On Hold Comments: ToO				Mon Mar 15 21:00:51 GMT 2021	
或	(3orbits COS-FUV G140L template (02)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN (3orbits COS-FUV G140L template (02)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN					
	\# Name Criteria		Description			
	(1) BHXRB-CANDIDATE X-Ray Transient Comments: This is a dummy test		ACCRETION DISK EJECTA WIND X-RAY NOVAE X-RAY TRANSIENT			
	\#Label (ETC Run) Target \quad Config,Mode,Aperture	Spectral Els.	Opt. Params. Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
		MIRRORA			60 Secs (60 Secs) $[==>]$	[1]
	2 SCI (COS.sp. 141 6844) (1) BATERB-CANDI COS/FUV, TIME-TAG, PSA 	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME }=10 \\ & 00 ; \\ & \text { FP-POS }=1 \\ & \hline \end{aligned}$		2000 Secs (2086 Secs)	[1]
	3 SCI (COS.sp. 141 6844) (1) BHXXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \hline \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	BUFFER-TIME $=10$ 00; FP-POS=2		2500 Secs (2466 Secs) [=> 2466.0 Secs]	[2]
	4 SCI (COS.sp. 141 6844) (1) BHXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=13 } \\ & 00 ; \\ & \text { FP-POS=3 } \\ & \hline \end{aligned}$		1400 Secs (1310 Secs) [=>1310.0 Secs $]$	[3]
	5 SCI (COS.sp. 141 (1) BATE 6844 DARB-CANDI COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=15 } \\ & 00 ; \\ & \text { FP-POS=4 } \end{aligned}$		1051 Secs (961 Secs)	[3]

Proposal 16489-3orbits COS-FUV G140L template (02) - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in .
Orbit 1

Orbit 2
Server Version: 20200619

Orbit 3
Server Version: 20200619

$\frac{\pi}{5}$	Proposal 16489, 3orbits COS-FUV G140L template (03), implementation Diagnostic Status: Warning Scientific Instruments: COS/FUV, COS/NUV Special Requirements: SCHED 100\%; ON HOLD Comments: This template has 3 orbits with the different FP-POS spaning all the orbits in order to optimize the exposure time On Hold Comments: ToO				Mon Mar 15 21:00:51 GMT 2021	
或	(3orbits COS-FUV G140L template (03)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN (3orbits COS-FUV G140L template (03)) Warning (Orbit Planner): ORBITAL VISIBILITY OVERRUN					
	\# Name Criteria		Description			
	(1) BHXRB-CANDIDATE X-Ray Transient Comments: This is a dummy test		ACCRETION DISK EJECTA WIND X-RAY NOVAE X-RAY TRANSIENT			
	\#Label (ETC Run) Target \quad Config,Mode,Aperture	Spectral Els.	Opt. Params. Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
		MIRRORA			60 Secs (60 Secs) $[==>]$	[1]
	2 SCI (COS.sp. 141 6844) (1) BATERB-CANDI COS/FUV, TIME-TAG, PSA 	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME }=10 \\ & 00 ; \\ & \text { FP-POS }=1 \\ & \hline \end{aligned}$		2000 Secs (2086 Secs)	[1]
	3 SCI (COS.sp. 141 6844) (1) BHXXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \hline \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	BUFFER-TIME $=10$ 00; FP-POS=2		2500 Secs (2466 Secs) [=> 2466.0 Secs]	[2]
	4 SCI (COS.sp. 141 6844) (1) BHXRB-CANDI COS/FUV, TIME-TAG, PSA DATE	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=13 } \\ & 00 ; \\ & \text { FP-POS=3 } \\ & \hline \end{aligned}$		1400 Secs (1310 Secs) [=>1310.0 Secs $]$	[3]
	5 SCI (COS.sp. 141 (1) BATE 6844 DARB-CANDI COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1105 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=15 } \\ & 00 ; \\ & \text { FP-POS=4 } \end{aligned}$		1051 Secs (961 Secs)	[3]

Proposal 16489-3orbits COS-FUV G140L template (03) - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in .

Orbit 1

Server Version: 20200619

Orbit 2
Server Version: 20200619

GS Reacq

Orbit Structure

Occultation
** ORBITAL VISIBILITY OVERRUN $=4$

Orbit 3
Server Version: 20200619

Proposal 16489-3orbits COS-FUV G140L template (04) - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in

Proposal 16489-3orbits COS-FUV G140L template (04) - Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in

