14,541 research outputs found

    Casimir Effect and Global Theory of Boundary Conditions

    Full text link
    The consistency of quantum field theories defined on domains with external borders imposes very restrictive constraints on the type of boundary conditions that the fields can satisfy. We analyse the global geometrical and topological properties of the space of all possible boundary conditions for scalar quantum field theories. The variation of the Casimir energy under the change of boundary conditions reveals the existence of singularities generically associated to boundary conditions which either involve topology changes of the underlying physical space or edge states with unbounded below classical energy. The effect can be understood in terms of a new type of Maslov index associated to the non-trivial topology of the space of boundary conditions. We also analyze the global aspects of the renormalization group flow, T-duality and the conformal invariance of the corresponding fixed points.Comment: 11 page

    Development of polymer network of phenolic and epoxies resins mixed with linseed oil: pilot study

    Get PDF
    Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40 percent. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart

    Calculable inverse-seesaw neutrino masses in supersymmetry

    Get PDF
    We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry breaking renormalization-group-induced vacuum expectation value. We adopt a minimal supergravity scenario without ad hoc supersymmetric mass parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.Comment: LaTeX, 5 pages, 4 figures. Comments and references added. Final version to appear in PR
    • …
    corecore