504 research outputs found

    Intrinsic flame instabilities in combustors: Analytic description of a 1-D resonator model

    Get PDF
    The study is concerned with theoretical examination of thermo-acoustic instabilities in combustors and focuses on recently discovered ‘flame intrinsic modes’. These modes differ qualitatively from the acoustic modes in a combustor. Although these flame intrinsic modes were intensely studied, primarily numerically and experimentally, the instability properties and dependence on the characteristics of the combustor remain poorly understood. Here we investigate analytically the properties of intrinsic modes within the framework of a linearized model of a quarter wave resonator with temperature and cross-section jump across the flame, and a linear model of heat release. The analysis of dispersion relation for the eigen-modes of the resonator shows that there are always infinite numbers of intrinsic modes present. In the limit of small interaction index n the frequencies of these modes depend neither on the properties of the resonator, nor on the position of the flame. For small n these modes are strongly damped. The intrinsic modes can become unstable only if n exceeds a certain threshold. Remarkably, on the neutral curve the intrinsic modes become completely decoupled from the environment. Their exact dispersion relation links the intrinsic mode eigen-frequency ωi with the mode number and the time lag τ: , where , +/−1. The main results of the study follow from the mode decoupling on the neutral curve and include explicit analytic expressions for the exact neutral curve on the plane, and the growth/decay rate dependence on the parameters of the combustor in the vicinity the neutral curve. The instability domain in the parameter space was found to have a very complicated shape, with many small islands of instability, which makes it difficult, if not impossible, to map it thoroughly numerically. The analytical results have been verified by numerical examination

    Coupling of acoustic and intrinsic modes in 1-D combustor models

    Get PDF
    The work is concerned with the theoretical examination of a new type of thermo-acoustic instability in combustors not reported in the literature. The instability results from linear coupling between the conventional acoustic mode and the recently discovered “flame intrinsic modes.” Within the framework of a 1D model of a quarter wave resonator with the standard n−τ model of flame heat release, intrinsic-acoustic mode coupling occurs when the real parts of the frequencies of neighboring acoustic and flame-intrinsic modes at small interaction index n are close. While at small n the Eigen-functions of close acoustic and flame intrinsic modes clearly exhibit their distinctive identities, with increase of n the mode identities become blurred and the Eigen-functions of acoustic modes resemble more and more those of flame intrinsic modes and at a certain n become indistinguishable. We refer them as coupled intrinsic-acoustic modes or coupled modes. When the “Rayleigh index” for a coupled mode behaving as an acoustic mode at small n is negative, at a larger n such a mode can nevertheless become unstable at one of the nearby intrinsic mode frequencies. We find analytically the instability domain due to coupling in the parameter space. Near the instability boundary, we reduce the transcendental dispersion relation to a quadratic or, if higher accuracy is desired, to a quartic equation. These models capture well all four possible coupling scenarios

    Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

    Get PDF
    Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∌70,000 phosphoprotein and ∌260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.This work was supported by the National Institutes of Health National Cancer Institute (grant U54 CA112970 to J.W.G., G.B.M., S.M., and P.T.S.). S.M.H. and S.M. were supported by the UK Medical Research Council (unit program numbers MC_UP_1302/1 and MC_UP_1302/3). S.M. was a recipient of a Royal Society Wolfson Research Merit Award. The MD Anderson Cancer Center RPPA Core Facility is funded by the National Institutes of Health National Cancer Institute (Cancer Center Core Grant CA16672)

    Yoga programme for type-2 diabetes prevention (YOGA-DP) among high risk people in India: a multicentre feasibility randomised controlled trial protocol.

    Get PDF
    INTRODUCTION: A huge population in India is at high risk of type-2 diabetes (T2DM). Physical activity and a healthy diet (healthy lifestyle) improve blood glucose levels in people at high risk of T2DM. However, an unhealthy lifestyle is common among Indians. Yoga covers physical activity and a healthy diet and can help to prevent T2DM. The research question to be addressed by the main randomised controlled trial (RCT) is whether a Yoga programme for T2DM prevention (YOGA-DP) is effective in preventing T2DM among high risk people in India as compared with enhanced standard care. In this current study, we are determining the feasibility of undertaking the main RCT. INTERVENTION: YOGA-DP is a structured lifestyle education and exercise programme. The exercise part is based on Yoga and includes Shithilikarana Vyayama (loosening exercises), Surya Namaskar (sun salutation exercises), Asana (Yogic poses), Pranayama (breathing practices) and Dhyana (meditation) and relaxation practices. METHODS AND ANALYSIS: This is a multicentre, two-arm, parallel-group, feasibility RCT with blinded outcome assessment and integrated mixed-methods process evaluation. Eligible participants should be aged 18-74 years, at high risk of T2DM (fasting plasma glucose level 5.6-6.9 mmol/L) and safe to participate in physical activities. At least 64 participants will be randomised to intervention or control group with final follow-up at 6 months. Important parameters, needed to design the main RCT, will be estimated, such as SD of the outcome measure (fasting plasma glucose level at 6-month follow-up), recruitment, intervention adherence, follow-up, potential contamination and time needed to conduct the study. Semistructured qualitative interviews will be conducted with up to 20-30 participants, a sample of those declining to participate, four YOGA-DP instructors and around eight study staff to explore their perceptions and experiences of taking part in the study and of the intervention, reasons behind non-participation, experiences of delivering the intervention and running the study, respectively. ETHICS AND DISSEMINATION: Ethics approval has been obtained from the following Research Ethics Committees: Faculty of Medicine and Health Sciences, University of Nottingham (UK); Centre for Chronic Disease Control (CCDC, India); Bapu Nature Cure Hospital and Yogashram (BNCHY, India) and Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA, India). The results will be widely disseminated among key stakeholders through various avenues. TRIAL REGISTRATION NUMBER: CTRI/2019/05/018893

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb−1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of ΌΌ\mu \mu and eÎŒe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
    • 

    corecore