7,337 research outputs found

    Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators

    Get PDF
    We investigate the role that noise plays in the hysteretic dynamics of a suspended nanotube or a graphene sheet subject to an oscillating force. We find that not only the size but also the position of the hysteresis region in these systems can be controlled by noise. We also find that nano-resonators act as noise rectifiers: by increasing the noise in the setup, the resonance width of the characteristic peak in these systems is reduced and, as a result, the quality factor is increased.Comment: 15 pages, 6 figures. Sent to PRB (in revision

    Polarization-selective grating mirrors used in the generation of radial polarization

    Get PDF
    Two novel methods to control the polarization of laser radiation are presented. The discrimination between different polarization distributions isperformed with a corrugation grating in the top high-index layer of a multilayer mirror, which couples the undesired polarization into a lossy waveguidemode of the multilayer. The generation of radially polarized radiation in a laser resonator is presented as a practical verification of the principl

    A New Genus And Species Of Euptychiina (lepidoptera: Nymphalidae: Satyrinae) From Southern Brazil.

    Get PDF
    This paper describes a new genus and a new species of Euptychiina from open grassland habitats (campos de cima da serra) in southern Brazil. The systematic position of this new taxon is discussed based on morphological and molecular data, and it is considered sister to Taydebis Freitas. Since the campos vegetation is considered endangered due to anthropogenic activities, this butterfly species deserves attention and should be included in future conservation plans for this biome.40231-

    Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory

    Get PDF
    This paper has a dual purpose. One aim is to study the evolution of coherent states in ordinary quantum mechanics. This is done by means of a Hamiltonian approach to the evolution of the parameters that define the state. The stability of the solutions is studied. The second aim is to apply these techniques to the study of the stability of minisuperspace solutions in field theory. For a λφ4\lambda \varphi^4 theory we show, both by means of perturbation theory and rigorously by means of theorems of the K.A.M. type, that the homogeneous minisuperspace sector is indeed stable for positive values of the parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure

    Reduction and Realization in Toda and Volterra

    Full text link
    We construct a new symplectic, bi-hamiltonian realization of the KM-system by reducing the corresponding one for the Toda lattice. The bi-hamiltonian pair is constructed using a reduction theorem of Fernandes and Vanhaecke. In this paper we also review the important work of Moser on the Toda and KM-systems.Comment: 17 page

    Wafer scale manufacturing of high precision micro-optical components through X-ray lithography yielding 1800 Gray Levels in a fingertip sized chip

    Get PDF
    We present a novel x-ray lithography based micromanufacturing methodology that offers scalable manufacturing of high precision optical components. It is accomplished through simultaneous usage of multiple stencil masks made moveable with respect to one another through custom made micromotion stages. The range of spectral flux reaching the sample surface at the LiMiNT micro/nanomanufacturing facility of Singapore Synchrotron Light Source (SSLS) is about 2 keV to 10 keV, offering substantial photon energy to carry out deep x-ray lithography. In this energy range, x-rays penetrate through resist materials with only little scattering. The highly collimated rectangular beam architecture of the x-ray source enables a full 4″ wafer scale fabrication. Precise control of dose deposited offers determined chain scission in the polymer to required depth enabling 1800 discrete gray levels in a chip of area 20 mm2^{2} and with more than 2000 within our reach. Due to its parallel processing capability, our methodology serves as a promising candidate to fabricate micro/nano components of optical quality on a large scale to cater for industrial requirements. Usage of these fine components in analytical devices such as spectrometers and multispectral imagers transforms their architecture and shrinks their size to pocket dimension. It also reduces their complexity and increases affordability while also expanding their application areas. Consequently, equipment based on these devices is made available and affordable for consumers and businesses expanding the horizon of analytical applications. Mass manufacturing is especially vital when these devices are to be sold in large quantities especially as components for original equipment manufacturers (OEM), which has also been demonstrated through our work. Furthermore, we also substantially improve the quality of the micro-components fabricated, 3D architecture generated, throughput, capability and availability for industrial application. Manufacturing 1800 Gray levels or more through other competing techniques is either limited due to multiple process steps involved or due to unacceptably long time required owing to their pencil beam architecture. Our manufacturing technique presented here overcomes both these shortcomings in terms of the maximum number of gray levels that can be generated, and the time required to generate the same

    Giant ambipolar Rashba effect in a semiconductor: BiTeI

    Full text link
    We observe a giant spin-orbit splitting in bulk and surface states of the non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cases it intersects spin-polarized bands, in the corresponding surface depletion and accumulation layers. The momentum splitting of these bands is not affected by adsorbate-induced changes in the surface potential. These findings demonstrate that two properties crucial for enabling semiconductor-based spin electronics -- a large, robust spin splitting and ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure
    corecore