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Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators
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We investigate the role that noise plays in the hysteretic dynamics of a suspended nanotube or a graphene sheet
subject to an oscillating force. We find that not only the size but also the position of the hysteresis region in these
systems can be controlled by noise. We also find that nanoresonators act as noise rectifiers: By increasing the
noise in the setup, the resonance width of the characteristic peak in these systems is reduced and, as a result, the
quality factor is increased.
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I. INTRODUCTION

Recent theoretical1,2 and experimental work3–8 has shown
that reducing the dimension and the size of a material with
a vibrational degree of freedom enhances the role of the
nonlinearities in the dynamics. Theory and experiments have
demonstrated noise squeezing3 and stochastic resonance4,5,9

in nanomechanical resonators. These systems are used as
precision measurement devices for applications such as mass
and force sensing,10 quantum motion detection, and radio
frequency signal processing.11 Resonators consisting of sus-
pended nanotubes or graphene sheets can be used as extremely
accurate mass sensors with yoctogram resolution.12 Models
based on driven Duffing oscillators with nonlinear dissipation
are used to interpret measurements in these devices.7,8 Non-
linear terms in the model are responsible for bistability in the
oscillatory response as a function of the driving frequency and
of quality factors dependent on the driving force.

Motivated by experiments on nanotube and graphene
resonators,7,8,12 we study in this work the dynamics of
graphene and nanotube resonators based on a suspended wire
subject to an external oscillating driving force. We take into
account the nonlinear damping term, the Duffing nonlinearity,
and we add white noise forcing not considered in the model
used to interpret the experimental results. Given the use
of these resonators as accurate mass sensing devices, it is
important to include in the dynamics all major effects in order
to describe more accurately both the system characteristics
and the different quantities inferred from them, such as mass,
quality factor, dissipation coefficients, etc.

Noise is always present in a physical system. For linear
systems, noise is commonly regarded as having a destructive
but relatively innocuous effect, blurring our view of a system
but having no effect on the underlying processes involved.
In nonlinear systems, a driving white noise term can modify
drastically the deterministic dynamics. It can shift bifurcation
points or induce behaviors with no deterministic counterpart,
thereby affecting the dynamics and the quantities measured
or inferred indirectly from the experimental measurements.
Previous theoretical work showed that the main sources of
noise in linear simple harmonic oscillators are thermomechan-
ical noise, temperature fluctuations, and adsorption-desorption
noise.13 The analysis of the sources of noise in nonlinear

resonators is beyond the scope of this work. However we
will consider two different cases. On the one hand, we shall
assume that the sources are similar to those of linear resonators
and discuss the general case of additive white noise, without
worrying about the causes of it. On the other hand, a local
nonlinear damping (dissipation) means that we may need to
add an appropriate white noise force to the equations according
to the fluctuation-dissipation theorem. This will result in a
special type of multiplicative noise. In both cases, considering
the effect of noise will allow us to estimate the values of the
cubic nonlinearity with higher precision than in the noiseless
case. Our results may also shed some light for other possible
applications.

The rest of the paper is as follows. In Sec. II we
give a general discussion of the characteristics of nonlinear
resonators, focusing on the role that the nonlinear dissipation
coefficient plays in the resonator dynamics. In Sec. III, we add
an external white noise of fixed strength to the resonator system
of Sec. II and discuss the subsequent modifications of its main
characteristics. In Sec. IV, we discuss the effect produced by
an internal noise satisfying the fluctuation-dissipation theorem.
Finally, in Sec. V we present the main results of this work and
the implications that they have in experimental measurements.

II. THEORY

We first discuss the properties of mechanical resonators
based on a suspended nanowire or graphene strip that is
doubly clamped and subjected to an oscillating external force
with frequency f . Since we only care about the dynamics of
the fundamental mode, we can consider the graphene mem-
brane as a one-dimensional object. In this regime the only
difference between the nanowire and the graphene strip is
given by the parameter values of each one.8

As has already been shown experimentally,8 the dynamics
of these resonators is highly nonlinear, as they present a force-
dependent quality factor and, in some cases, hysteresis in the
oscillation amplitude as a function of the driving frequency.
The resonator dynamics can be described by the following
equation of motion:14

m ¨̃x = −kx̃ − αx̃3 − γ ˙̃x − η̃x̃2 ˙̃x + Fdrive cos(2πf t̃), (1)
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where m is the effective mass, αx3 is the Duffing term,
γ ˙̃x and η̃x̃2 ˙̃x are the linear and nonlinear damping terms,
and (k + αx2) is the amplitude-dependent spring’s stiffness
with a spring constant k = mω2

0 (ω0 ≈ 2πf so that the drive
frequency is close to resonance with the resonator natural
frequency). Depending on the sign of α, the Duffing term
modifies the stiffness of the resonator (more stiff for α >

0, softer for α < 0). Equivalently, we can work with the
nondimensional equation

ẍ = −x − Q−1ẋ − x3 − ηx2ẋ + FD cos(�t)

with

x = x̃

√
αmω2

0, t = ω0 t̃ , Q−1 = γ

mω0
, η = η̃ω0

α
,

FD = Fdrive

ω3
0

√
α

m3
, � = 2πf

ω0
, (2)

which will be used all throughout the paper. This means that all
the quantities appearing in this work are dimensionless except
when specified otherwise.

Duffing resonators present a characteristic resonant line
shape. They have a resonant peak for the maximum oscillation
amplitude |x| at the driving angular frequency � = �res

and a force-dependent resonance width �� = 2πFWHM
(FWHM is the width at which the profile curve reaches half
of its maximum value, measured from the positive minima
value it reaches) which is constant (non-force-dependent) for
linear resonators. When the changes to the resonance due
to dissipation or noise are smaller than the resonance width
obtained without consideration of these effects, the resonance
is mainly due to nonlinearity and the standard definition of
the quality factor is Q = ω0Ẽ/〈dẼ/dt̃〉 = 1.09 �/�� (Ẽ is
the mechanical energy at a given time and 〈· · ·〉 denotes time
averaging over a time scale long compared with the oscillation
period but sufficiently short that the decay of the amplitude
is negligible; see the Supplemental Material in Ref. 8). For
linear resonators the resonant frequency �res and the quality
factor Q are independent of the driving force,8 whereas for
nonlinear resonators the energy dissipation and hence the
quality factor depend on the oscillation amplitude. Numerical
simulations show that the resonant frequency �res decreases
with increasing η [Fig. 1(a)] and increases with FD [Fig. 1(b)].
The width of the characteristic peak also depends on η and FD .

The dependence of Q on the driving force and on the
nonlinear dissipation term is not the only characteristic of
Duffing resonators. One important feature of these systems
is the presence of hysteresis in the oscillation amplitude as a
function of the driving frequency or the driving force.6 Figure 1
shows that the system has more than one possible oscillation
amplitude for a range of values of �. In the bistable region there
are two stable fixed points corresponding to periodic orbits in
the case of periodically driven wires, one of larger oscillation
amplitude (higher in energy) and one of smaller oscillation
amplitude (lower energy). There is also one unstable periodic
orbit located between the stable ones.

The two key elements in the hysteretic behavior, discussed
so far in both theory and experiments, are the Duffing
term, responsible for the system bistability, and the nonlinear
dissipation term η̃x̃2 ˙̃x, which controls the size of the hysteresis
region. In the limit of weak linear damping, perturbation theory
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FIG. 1. (Color online) Maximum oscillation amplitude, |x|, as a
function of � in the case of zero noise: (a) for a fixed value of the
driving force FD = 0.2 and different values of η, from bottom to
top η = 1.2, η = 0.5, η = 0.2; (b) for a fixed value of the nonlinear
damping coefficient η = 0.5 and different values of FD from bottom
to top FD = 0.05, FD = 0.1, FD = 0.2. Empty circles correspond
to stable orbits and solid triangles to unstable orbits. The small
peak found near � ∼ 1/3 corresponds to a subharmonic resonance
(Ref. 15). This subharmonic resonance is also observed in Fig. 3.

based on the small parameter ε = Q−1 � 1 shows that it
is necessary to have η <

√
3 for the solutions of Eq. (2) to

exhibit bistability.1 However this condition only provides an
upper bound. Numerical simulations show that the maximum
η for which bistability is present, ηM , depends on the driving
force amplitude FD . Figures 2(a) and 2(b) depict ηM as a
function of FD and the size of the hysteresis window (the
range of frequencies at which there is hysteresis), �H , as a
function of η. Note that ηM = 1.325 at FD = 0.2, indicated
in Fig. 2(a), is appreciably smaller than the upper bound

√
3,

whereas for a much smaller FD = 3.8 × 10−3, ηM = 1.642 as
indicated in Fig. 2(b) is closer to

√
3. Increasing η reduces the

frequency range at which the system is bistable. For a given
driving force FD , the minimum frequency �min at which there
is bistability does not vary too much, whereas the maximum
frequency �max at which hysteresis can be observed moves
toward smaller values. In Fig. 2(a), �min = 1.257 and �max is
seemingly unbounded for η = 0. For η = 0.5, �min has moved
slightly to �min = 1.251 while the maximum frequency has
been considerably reduced to �max = 1.357. This reduction
continues until η reaches a critical point where �min = �max

and bistability completely disappears. This happens at η =
1.325 in the case of FD = 0.2 [Fig. 2(a)], and at η = 1.642
for FD = 3.8 × 10−3 [Fig. 2(b)]. Eichler et al. estimate η̃ =
7.9 × 105 kg/(m2 s) > α

√
3/ω0 (corresponding to η >

√
3)

for carbon nanotubes and η̃ = 1.5 × 105 kg/(m2 s) < α
√

3/ω0

(η <
√

3) for graphene resonators.8

So far the only parameter controlling the size of the
hysteresis region or the dependence of Q on the driving
force has been the nonlinear dissipation coefficient η. This
coefficient is an intrinsic property of each material and is fixed
for every setup. However there is a parameter that may give rise
to similar effects and that can be tuned or controlled externally.
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FIG. 2. (Color online) Bistability zone as function of nonlinear
dissipation amplitude η and � = 2πf for fixed values of the driving
amplitude: (a) FD = 0.2 and (b) FD = 3.8 × 10−3. The projection of
the red curve on the � axis represents the minimum and maximum
values of � at which the system is bistable. The size of the hysteresis
window, �H = �max − �min, depends on both the driving force and
the nonlinear dissipation parameter [compare panels (a) and (b)]. For
example, for η = 0.5, the minimum (maximum) frequency at which
hysteresis can be observed is �min = 1.262 (�max = 1.357) in panel
(a) and �min = 1.02 (�max = 1.034) in panel (b). As η increases,
�H gets reduced until the inflection point, �max = �min, at which
hysteresis completely disappears.

In the next section we explore the effect that the addition of
noise has on the dynamics of the system and show that it has
properties similar to those found for η.

III. EXTERNAL NOISE: RESULTS AND DISCUSSION

According to the fluctuation-dissipation theorem, noise
accompanies the process of energy dissipation. Thus we can
expect behaviors similar to those related to η when noise is
taken into account. For such purpose we add an external white
noise to Eq. (2)

ẍ = −x − Q−1ẋ − x3 − ηx2ẋ + FD cos(�t) + σξ (t),

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = δ(t − t ′), (3)

which is presumably larger than the intrinsic noise. Numerical
simulation of this stochastic equation shows that the noise
shrinks the hysteresis window [Figs. 3, 4(a), and 4(b)] and
reduces the resonance width (Fig. 5).

For fixed values of FD and η, the hysteresis window is
reduced by increasing the noise strength, σ . Figure 3 shows
that at η = 0.5, the hysteresis window has been reduced
from �H = 0.098 at σ = 0 to �H = 0.04 at σ = 0.014. In
contrast with the effect of increasing η, increasing σ builds
up rapidly the minimum frequency �min at which bistability
starts, whereas the maximum frequency �max is slightly above
than that of the deterministic case but it does not change that
much with σ ; see Fig. 4. Let us now compare the effects of
η and σ on the hysteresis window. In Fig. 2, we decrease the
window size by increasing η from zero to η = 0.7671 at zero
noise, whereas in Fig. 4(a) we do so by increasing σ from zero

σ=0.014
σ=0
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FIG. 3. (Color online) Curve of the maximum oscillation ampli-
tude as a function of � at zero noise (solid line) and at σ = 0.014
(doted line) for a given η = 0.5, FD = 0.2, Q−1 = 5 × 10−4. The
area enclosed by the solid square corresponds to the bistability zone
at zero noise, and the area enclosed by the dotted square represents
the bistability zone for a finite noise amplitude σ . Inset: Zoom of the
bistability region.

to σ = 0.014 at η = 0.5. In both cases �H = 0.04 is the same;
however �max and �min are different for the same FD = 0.2:
(i) �max = 1.299, �min = 1.259 for η = 0.7671 and σ = 0,
and (ii) �max = 1.318, �min = 1.278 for σ = 0.014 and
η = 0.5. The hysteresis window has shifted towards higher
values of �. The critical value at which hysteresis disappears,
�max = �min, occurs at � = 1.251 for σ = 0 and η = 1.325
[Fig. 2(a)]. However, for η = 0.5 and σ = 0.014, it occurs
at � = 1.369, above the original zone of hysteresis at zero
noise [shaded area in Fig. 4(a)]. Summarizing, increasing σ

σ

Ω

(a)

(b)

FIG. 4. (Color online) Bistability zone in the plane (σ,�) for
fixed nonlinear damping η = 0.5 and (a) FD = 0.2, (b) FD = 0.02.
The projection of the curve on the � axis gives the minimum and
maximum frequencies at which there is hysteresis. The hysteresis
region gets smaller as the noise is increased. Comparing (a) and (b),
we can observe that this region also gets smaller for smaller values
of FD. The shaded zone corresponds to values of � at which there is
no hysteresis for σ = 0.
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FIG. 5. (Color online) (a) Averaged maximum oscillation ampli-
tude XmaxAv as a function of � for η = 1.6 and FD = 0.0038 and
different values of σ , from bottom to top σ = 0.4FD , σ = 0.5FD ,
σ = 0.6FD , σ = FD , σ = 1.25FD , σ = 1.5FD . (b) ��/2π (width
at the half-maximum value) as a function of σ for the profile curves in
(a). Dots correspond to numerical results and solid line corresponds
to a linear fitting with ��/2π = 0.033669 − 0.0047149σ .

not only reduces the hysteresis window (as has already been
found experimentally);10 it also shifts the window towards
higher frequencies. This is so to the point that, just before
the critical frequency �max = �min, hysteresis is found in a
frequency region in which there is no bistability at zero noise
[shaded area in Figs. 4(a) and 4(b)].

The fact that the hysteresis window moves towards higher
frequency values when σ increases is more than just a
curiosity. It is telling us a lot about what is going on in the
system: It means that noise is feeding energy into the system.
This can be understood with the following argument. In the
hysteretic region there are three periodic orbits; one unstable
orbit separates stable orbits with larger and smaller amplitude
(therefore with higher and lower energy), as seen in Figs. 1
and 3. When the hysteresis zone is reduced, only one of the
stable orbits survives. The other stable orbit coalesces with
the unstable one and both then disappear. As η increases the
surviving orbit has the smaller amplitude: As η increases, the
system is dissipating more energy and its dynamics selects
lower energy orbits. In contrast to this, the larger amplitude
orbit survives when σ increases because the noise is feeding
energy to the system making it more likely for the system to
oscillate around the higher energy periodic orbit. It also turns
out that the quality factor increases with noise which enforces
this argument.

Even more important than the reduction of �H is that
increasing the noise strength makes the resonance width,
��, thinner for a large range of values of σ . The effect
that resonance width shrinks with noise is always present,
even in systems not exhibiting hysteresis. In Fig. 5(a) the
change of the profile curve with σ is plotted. In this figure the
average value of the maximum oscillation amplitudes reached
over a long period of time is plotted. Figure 5(b) shows the
resonance width as a function of σ for the averaged maximum

amplitude profile curve. Figure 5 shows that the resonance
width decreases with σ .

The modification of the resonance width indicates that the
presence of noise is affecting the value of the quality factor Q.
Since the reductions/enlargements of the resonant width due to
noise and dissipation are small compared with the zero-noise
resonance width, the quality factor is8

Q = �0
〈E〉
〈Ė〉 ≈ 1.09

�

��
, (4)

where E is the mechanical energy at a given time t . According
to the Supplemental Material in Ref. 8, the approximation
Q ≈ 1.09�/�� holds in the limit of very large quality factor.
The noise reduces �� and therefore it enhances the quality
factor. This contrasts with the behavior of linear systems. In
them, external noise increases energy dissipation and makes
these systems less efficient. However for our nonlinear system,
the random energy provided by noise gets absorbed by the
system and converted in useful mechanical energy, thereby
yielding a higher quality factor. In this sense, the nonlinearly
damped driven Duffing oscillator acts in average on time as a
noise rectifier that improves its performance by using energy
provided by the external noise.

The reduction of the frequency width is also telling us that
the value of η calculated from the experiments (in which noise
is certainly present) may be smaller than the real one; i.e.,
η|σ=0 > η|σ>0. The value of η in Ref. 8 is calculated from the
expression

η =
(

m �f

0.032

)3 (
FD

f0

)2

, (5)

where the dependence of �� on σ has not been taken into
account. We can include this dependence in Eq. (5) and let
η(σ ) be given by (5) for a fixed value of σ � 0. We can rewrite
�� = ��|σ=0/f (σ ), with f (σ ) = (��|σ=0/��|σ>0). The
factor f (σ ) indicates how the resonance width changes with
noise: f (0) = 1 and f (σ ) > 1 for σ > 0. Using (5), we see
that

η(σ ) = η(0)

f (σ )3
� η(0). (6)

Thus the value η(σ ) is screened by the effect of noise.

IV. INTERNAL NOISE

So far we have discussed a general case of constant-
amplitude external white noise without specifying its nature.
However, in our system there are different sources of dis-
sipation that contribute to γ and η̃ in (1). Let us assume
that the dominant noise is thermomechanical.17 According
to the fluctuation-dissipation theorem, there should be a
stochastic white noise forcing term in (3) with an appropriate
strength, σ 2 = 2δ(ηx2 + 1/Q), where δ = αkBT /k2. We have
performed numerical simulations of (3) with this internal noise
for a given value of η. We see in Fig. 6 that the obtained
results are qualitatively similar to those found using external
noise [Figs. 5(a) and 5(b)]: When the dominant noise is
thermomechanical the resonance width decreases with T for
low temperatures. Figure 6(b) shows that on average increasing
the temperature decreases the resonance width (similar to
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FIG. 6. (Color online) (a) Averaged maximum oscillation am-
plitude, XmaxAv, for η = 1.6 and FD = 0.0038 as a function of �.
The noise strength is given by the fluctuation-dissipation theorem,
σ 2 = 2δ(ηx2 + 1/Q), with δ = αkBT /(k2). From bottom to top:
T = 0, T = 25 K, T = 100 K, T = 125 K, T = 175 K, T = 200 K,
T = 350 K. (b) ��/2π (width at the half-maximum value) as
a function of T for the profile curves in (a). Dots correspond to
numerical results and solid line corresponds to a linear fitting with
��/2π = −8.2401 × (10)−6T + 0.031640.

the effect of increasing the fixed strength σ of an external
noise), thereby increasing the quality factor. Also the hysteresis
frequency range diminishes with all the consequences already
mentioned.

The measurements of the quality factor made by Eichler
et al. are not affected by these results, since they calculate
Q = 1.09 �0/�� and take �� from the experimental mea-
surements which are affected by the existing noise. However
they calculated η̃ without taking noise into account. The
measurements in Ref. 8 were interpreted assuming that only
the nonlinear dissipation η̃ was responsible for the shrinking
or expansion of the resonant peak. Since the dissipation η̃(σ )
is smaller in the presence of noise, the value of η̃ proposed in
Ref. 8 could be smaller than that in the real sample.

V. CONCLUSIONS

We have found that the presence of noise modifies in
a qualitative way the dynamics of the nonlinear Duffing
resonators, and it gives rise to some effects similar to those
attributed to the nonlinear dissipation coefficient. Noise not
only reduces the window of hysteresis but also shifts it to
higher values of the driving frequency. Since the value of
η is inherent to the material and cannot be tuned, there is
not much room for modifying the quality factor rather than
decreasing FD which cannot always be done experimentally.
However controlling the sources of noise allows us to increase
or decrease the bistability regions and even to shift them to
higher frequencies within easy experimental reach.

We have also found that the resonant width can be controlled
by noise and hence the quality factor can be increased by
increasing the sources of noise in the system. This means not
only that higher quality factors can be reached by increasing
the sources of noise, but also, and even more important, it
means that nanoresonators act as noise rectifiers. This is the
main result of this work, to show that nonlinear nanoresonators
are able to convert random energy from the environment into
useful mechanical energy.

Even though there are different sources of noise present in
these systems,13,17 in this work we have discussed mostly the
case of white noise with constant strength σ , leaving its nature
unspecified. However, we also performed numerical simula-
tions assuming that the dominant noise is of thermomechanical
origin and satisfies the fluctuation-dissipation theorem (the
noise strength σ =

√
2δ(ηx2 + 1/Q), with δ = αkBT /k2,

depends on the temperature and on the oscillation amplitude).
The results are qualitatively the same as those obtained for
constant-strength white noise.
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