1,851 research outputs found

    Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    Get PDF
    We present a technique to extract radial velocity measurements from echelle spectrograph observations of rapidly rotating stars (Vsini50V\sin{i} \gtrsim 50 km s1^{-1}). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the radial velocity shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract radial velocity measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute radial velocities with a precision ranging from 0.5-2.0 km s1^{-1} per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with radial velocity scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly-rotating stars.Comment: Accepted to ApJ

    Acoustic space occupancy: Combining ecoacoustics and lidar to model biodiversity variation and detection bias across heterogeneous landscapes

    Get PDF
    There is global interest in quantifying changing biodiversity in human-modified landscapes. Ecoacoustics may offer a promising pathway for supporting multi-taxa monitoring, but its scalability has been hampered by the sonic complexity of biodiverse ecosystems and the imperfect detectability of animal-generated sounds. The acoustic signature of a habitat, or soundscape, contains information about multiple taxa and may circumvent species identification, but robust statistical technology for characterizing community-level attributes is lacking. Here, we present the Acoustic Space Occupancy Model, a flexible hierarchical framework designed to account for detection artifacts from acoustic surveys in order to model biologically relevant variation in acoustic space use among community assemblages. We illustrate its utility in a biologically and structurally diverse Amazon frontier forest landscape, a valuable test case for modeling biodiversity variation and acoustic attenuation from vegetation density. We use complementary airborne lidar data to capture aspects of 3D forest structure hypothesized to influence community composition and acoustic signal detection. Our novel analytic framework permitted us to model both the assembly and detectability of soundscapes using lidar-derived estimates of forest structure. Our empirical predictions were consistent with physical models of frequency-dependent attenuation, and we estimated that the probability of observing animal activity in the frequency channel most vulnerable to acoustic attenuation varied by over 60%, depending on vegetation density. There were also large differences in the biotic use of acoustic space predicted for intact and degraded forest habitats, with notable differences in the soundscape channels predominantly occupied by insects. This study advances the utility of ecoacoustics by providing a robust modeling framework for addressing detection bias from remote audio surveys while preserving the rich dimensionality of soundscape data, which may be critical for inferring biological patterns pertinent to multiple taxonomic groups in the tropics. Our methodology paves the way for greater integration of remotely sensed observations with high-throughput biodiversity data to help bring routine, multi-taxa monitoring to scale in dynamic and diverse landscapes

    Provenance Variability in Coeval Slope Channel Systems : Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea)

    Get PDF
    Funding Information: This research was conducted as part of a Ph.D. project funded by AkerBP. Acknowledgments: We would like to express our deepest gratitude to sponsors from AkerBP who kindly provided funding and data necessary for this research. We would also like to thank Kingba Princewill, Ahmed Jama Ahmed, Elliot Foley and Fraser Scott for their outstanding work on their respective MSc projects, which helped further this research, and other staff at the University of Aberdeen, most notably John Still for his support with microprobe analysis. This article belongs to the Collection Detrital Minerals: Their Application in Palaeo-Reconstruction)Peer reviewedPublisher PD

    Switchable ErSc2N rotor within a C80 fullerene cage: An EPR and photoluminescence excitation study

    Get PDF
    Systems exhibiting both spin and orbital degrees of freedom, of which Er3+ is one, can offer mechanisms for manipulating and measuring spin states via optical excitations. Motivated by the possibility of observing photoluminescence and electron paramagnetic resonance from the same species located within a fullerene molecule, we initiated an EPR study of Er3+ in ErSc2N@C80. Two orientations of the ErSc2N rotor within the C80 fullerene are observed in EPR, consistent with earlier studies using photoluminescence excitation (PLE) spectroscopy. For some crystal field orientations, electron spin relaxation is driven by an Orbach process via the first excited electronic state of the 4I_15/2 multiplet. We observe a change in the relative populations of the two ErSc2N configurations upon the application of 532 nm illuminations, and are thus able to switch the majority cage symmetry. This photoisomerisation, observable by both EPR and PLE, is metastable, lasting many hours at 20 K.Comment: 4 pages, 4 figure

    Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma.

    Get PDF
    Clinical TrialMulticenter StudyThis is the peer reviewed version of the article which has been published in final form at DOI: 10.1111/j.1365-2133.2008.08668.x This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.© 2008 The AuthorsJournal Compilation © 2008 British Association of DermatologistsBACKGROUND: Photodynamic therapy (PDT) involves the activation of a photosensitizer by visible light to produce activated oxygen species within target cells, resulting in their destruction. Evidence-based guidelines support the efficacy of PDT using topical 5-aminolaevulinic acid (ALA-PDT) in actinic keratoses, Bowen disease and basal cell carcinoma (BCC). Efficacy for nodular BCC appears inferior to that for superficial BCC unless prior debulking or repeat treatments are performed. Objectives The aim of this study was to assess the safety and efficacy of adding a novel iron-chelating agent, CP94 (1,2-diethyl-3-hydroxypyridin-4-one hydrochloride), to topical ALA, to temporarily increase the accumulation of the photosensitizer in the tumour. METHODS: A mixed topical formulation of ALA + increasing concentrations of CP94 was used to carry out PDT on previously biopsied nodular BCC with no prior lesion preparation using standard light delivery. The area was assessed clinically and surgically excised 6 weeks later for histological examination. RESULTS: Enhanced PDT using 40% CP94 resulted in significantly greater clearance rates in nodular BCC than with ALA-PDT alone, in our protocol of single-treatment PDT with no lesion preparation. CONCLUSIONS: The results of this study demonstrate the safe and effective use of an enhanced ALA-PDT protocol for nodular BCC using CP94, with no adverse reactions to this modification. This is the first time this formulation has been used in patients. This formulation is now the focus of further study

    Electron spin relaxation of N@C60 in CS2

    Full text link
    We examine the temperature dependence of the relaxation times of the molecules N@C60 and N@C70 (which comprise atomic nitrogen trapped within a carbon cage) in liquid CS2 solution. The results are inconsistent with the fluctuating zero field splitting (ZFS) mechanism, which is commonly invoked to explain electron spin relaxation for S > 1/2 spins in liquid solution, and is the mechanism postulated in the literature for these systems. Instead, we find a clear Arrhenius temperature dependence for N@C60, indicating the spin relaxation is driven primarily by an Orbach process. For the asymmetric N@C70 molecule, which has a permanent non-zero ZFS, we resolve an additional relaxation mechanism caused by the rapid reorientation of its ZFS. We also report the longest coherence time (T2) ever observed for a molecular electron spin, being 0.25 ms at 170K.Comment: 6 pages, 6 figures V2: Updated to published versio

    Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin

    Get PDF
    Funding This research received no external funding. Acknowledgments We are grateful to John Still (University of Aberdeen) and Iain Macdonald (Cardiff University) for their assistance with acquisition of mineral chemical data, and to Mick Pointon (CASP) for running the “R” code to assign apatite provenance. This research was carried out as part of CASP’s Greenland-Norway Project. Our sponsors’ financial support is gratefully acknowledged. We are grateful for the reviewers comments, which significantly improved the manuscript.Peer reviewedPublisher PD

    Constraints on the Obliquities of Kepler Planet-Hosting Stars

    Get PDF
    Stars with hot Jupiters have obliquities ranging from 0-180 degrees, but relatively little is known about the obliquities of stars with smaller planets. Using data from the California-Kepler Survey, we investigate the obliquities of stars with planets spanning a wide range of sizes, most of which are smaller than Neptune. First, we identify 156 planet hosts for which measurements of the projected rotation velocity (vsini) and rotation period are both available. By combining estimates of v and vsini, we find nearly all the stars to be compatible with high inclination, and hence, low obliquity (less than about 20 degrees). Second, we focus on a sample of 159 hot stars (> 6000K) for which vsini is available but not necessarily the rotation period. We find 6 stars for which vsini is anomalously low, an indicator of high obliquity. Half of these have hot Jupiters, even though only 3% of the stars that were searched have hot Jupiters. We also compare the vsini distribution of the hot stars with planets to that of 83 control stars selected without prior knowledge of planets. The mean vsini of the control stars is lower than that of the planet hosts by a factor of approximately pi/4, as one would expect if the planet hosts have low obliquities. All these findings suggest that the Kepler planet-hosting stars generally have low obliquities, with the exception of hot stars with hot Jupiters.Comment: AJ, in pres

    Violation of a Leggett-Garg inequality with ideal non-invasive measurements

    Get PDF
    The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to-date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realisation using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.Comment: 6+4 pages. Supplementary Methods section include
    corecore