149 research outputs found

    Simulation of the scalar transport above and within the Amazon forest canopy

    Get PDF
    The parallelized large-eddy simulation model (PALM) was used to understand better the turbulent exchanges of a passive scalar above and within a forested region located in the central Amazon. Weak (2 ms−1) and strong (6 ms−1) wind conditions were simulated. A passive scalar source was introduced to the forest floor for both simulations. The simulations reproduced the main characteristics of the turbulent flow and of the passive scalar transport between the forest and the atmosphere. Noteworthily, strong and weak wind conditions presented different turbulence structures that drove different patterns of scalar exchange both within and above the forest. These results show how passive scalar concentration is influenced by the wind speed at the canopy top. Additionally, higher wind speeds are related to stronger sweep and ejection regimes, generating more intense plumes that are able to reduce the passive scalar concentration inside the forest canopy. This work was the first that used PALM to investigate scalar transport between the Amazon rainforest and the atmosphere

    Artificial Antigen Presenting Cells With Preclustered anti-CD28/-CD3/-LFA-1 Monoclonal Antibodies Are Highly Effective To Induce The Ex-Vivo Expansion Of Functional Human Antitumor T Cells

    Get PDF
    Effective adoptive T cell therapy requires the _ex vivo_ generation of functional T lymphocytes with a long lifespan _in vivo_. We evaluated _in vitro_ T cell expansion by artificial antigen presenting cells (aAPC) generated with activating (human anti-CD3), co-stimulating (human anti-CD28) and adhesion (human anti-LFA-1) monoclonal antibodies pre-clustered in microdomains (MDs) held by a liposome scaffold. The co-localization of T cell ligands in MDs and the targeting of an adhesion protein, increasing the efficiency of immunological synapse formations, represent the novelties of our system. These aAPCs allowed increased expansion of polyclonal CD4^+^ and CD8^+^ T cells and of tumor antigen-specific CD8^+^ T cells compared to anti-CD28- and anti-CD3-coated microbeads and to immobilized anti-CD3. These aAPCs allowed the generation of T cells displaying an immunophenotype consistent with long-term _in vivo_ persistence, without increasing the frequency of regulatory T cells. Finally, our aAPCs proved to be suitable for large scale T cell expansion required in immunotherapy trials

    An Expanded Peripheral T Cell Population to a Cytotoxic T Lymphocyte (Ctl)-Defined, Melanocyte-Specific Antigen in Metastatic Melanoma Patients Impacts on Generation of Peptide-Specific Ctls but Does Not Overcome Tumor Escape from Immune Surveillance in Metastatic Lesions

    Get PDF
    It is not known if immune response to T cell–defined human histocompatibility leukocyte antigen (HLA) class I–restricted melanoma antigens leads to an expanded peripheral pool of T cells in all patients, affects cytotoxic T lymphocyte (CTL) generation, and correlates with anti-tumor response in metastatic lesions. To this end, a limiting dilution analysis technique was developed that allowed us to evaluate the same frequency of peptide-specific T cells as by staining T cells with HLA–peptide tetrameric complexes. In four out of nine patients, Melan-A/Mart-127–35–specific CTL precursors (CTLp) were ≥1/2,000 peripheral blood lymphocytes and found mostly or only in the CD45RO+ memory T cell subset. In the remaining five patients, a low (<1/40,000) peptide-specific CTLp frequency was measured, and the precursors were only in the CD45RA+ naive T cell subset. Evaluation of CTL effector frequency after bulk culture indicated that peptide-specific CTLs could be activated in all patients by using professional antigen-presenting cells as dendritic cells, but CTLp frequency determined the kinetics of generation of specificity and the final number of effectors as evaluated by both limiting dilution analysis and staining with HLA-A*0201–Melan-A/Mart-1 tetrameric complexes. Immunohistochemical analysis of 26 neoplastic lesions from the nine patients indicated absence of tumor regression in most instances, even in patients with an expanded peripheral T cell pool to Melan-A/Mart-1 and whose neoplastic lesions contained a high frequency of tetramer-positive Melan-A/Mart-1–specific T cells. Furthermore, frequent lack of a “brisk” or “nonbrisk” CD3+CD8+ T cell infiltrate or reduced/absent Melan-A/Mart-1 expression in several lesions and lack of HLA class I antigens were found in some instances. Thus, expansion of peripheral immune repertoire to Melan-A/Mart-1 takes place in some metastatic patients and leads to enhanced CTL induction after antigen-presenting cell–mediated selection, but, in most metastatic lesions, it does not overcome tumor escape from immune surveillance

    Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy

    Get PDF
    Background Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. Methods Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. Results Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. Conclusions The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches. © 2022, The Author(s)

    Heme catabolism by tumor-associated macrophages controls metastasis formation

    Get PDF
    Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1–CSF1R–C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker

    Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma

    Get PDF
    Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front
    corecore