975 research outputs found
VC-based lithium batteries: The influence of magnetic phase and Hubbard interaction
MXenes are a family of two-dimensional materials that could be attractive for
use as electrodes in lithium batteries due to their high specific capacity. For
this purpose, it is necessary to evaluate magnitudes such as the lithium
adsorption energy and the magnitude of the open-circuit voltage for different
lithium concentrations. In this paper, we show through first principles
calculations that in a VC monolayer we must consider the high correlation
between the electrons belonging to vanadium to obtain correct results of these
quantities. We include this correlation employing the Hubbard coupling
parameter obtained by a linear response method. We found that the system is
antiferromagnetic and that the quantities studied depend on the magnetic phase
considered. Indirectly, experimental results could validate the theoretical
value of the theoretical Hubbard parameter.Comment: 7 pages, 4 figure
Running Genetic Algorithms in the Edge: A First Analysis
Nowadays, the volume of data produced by different kinds of devices is continuously growing, making even more difficult to solve the
many optimization problems that impact directly on our living quality. For instance, Cisco projected that by 2019 the volume of data will reach 507.5 zettabytes per year, and the cloud traffic will quadruple. This is not sustainable in the long term, so it is a need to move part of the intelligence from the cloud to a highly decentralized computing model. Considering this, we propose a ubiquitous intelligent system which is composed by different kinds of endpoint devices such as smartphones, tablets, routers, wearables, and any other CPU powered device. We want to use this to solve tasks useful for smart cities. In this paper, we analyze if these devices are suitable for this purpose and how we have to adapt the optimization algorithms to be efficient using heterogeneous hardware. To do this, we perform a set of experiments in which we measure the speed, memory usage, and battery consumption of these devices for a set of binary and combinatorial problems. Our conclusions reveal the strong and weak features of each device to run future algorihms in the border of the cyber-physical system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R (http://moveon.lcc.uma.es), TIN2016-81766-REDT (http://cirti.es), TIN2017-88213-R (http://6city.lcc.uma.es), the Ministry of Education of Spain (FPU16/02595
Recommended from our members
Ongoing oroclinal bending in the Cascadia forearc and its relation to concave-outboard plate margin geometry
The concave-inboard (concave toward the overriding plate) geometry of most convergent margins is considered a natural consequence of the depression of the edge of a thin spherical cap, whereas concave-outboard margin segments commonly form around indenters on the subducting plate. At the Cascadia subduction zone, the apex of a > 500-km-long concave-outboard bend in the trench presently shows no obvious subduction of an indenter, but does coincide with the axis of an outboard-facing concavity in upper-plate rocks arched around the Olympic Peninsula in northwestern Washington State, USA. Here we synthesize paleomagnetic and structural data together with new analyses of Global Navigation Satellite System data to show that the upper plate at Cascadia has been folded from the Miocene to the present into an orocline with an axial trace that bisects the Olympic Peninsula. The processes that accommodate bending, which we suggest include (1) folding by flexural slip on the orocline limbs and (2) shortening, uplift, and escape within the core of the fold at the Olympic Mountains, have the combined result of relative motion of the forearc towards the arc at the core of the orocline, and sustained opposing rotations of the upper plate on the orocline limbs. We propose that oroclinal bending is promoted and maintained by along-strike variations in plate-boundary tractions resulting from the geometry of the plate interface at depth and suggest that these processes can contribute to the development of concave-outboard margins without the need for a subducting indenter
Overall evaluation of Skylab imagery for mapping of Latin America
The author has identified the following significant results. Skylab imagery is both desired and needed by the Latin American catographic agencies. The imagery is cost beneficial for the production of new mapping and maintenance of existing maps at national topographic series scales. If this information was available on a near time routine coverage basis, it would provide an excellent additional data base to the Latin American cartographic community, specifically Argentina, Bolivia, Chile, Colombia, Dominican Republic, Guatemala, Paraguay, and Venezuela
The Gas Transfer through Polar Sea Ice Experiment: Insights into the Rates and Pathways that Determine Geochemical Fluxes
Sea ice is a defining feature of the polar marine environment. It is a critical domain for marine biota and it regulates ocean-atmosphere exchange, including the exchange of greenhouse gases such as CO2 and CH4. In this study, we determined the rates and pathways that govern gas transport through a mixed sea ice cover. N2O, SF6, 3He, 4He, and Ne were used as gas tracers of the exchange processes that take place at the ice-water and air-water interfaces in a laboratory sea ice experiment. Observation of the changes in gas concentrations during freezing revealed that He is indeed more soluble in ice than in water; Ne is less soluble in ice, and the larger gases (N2O and SF6) are mostly excluded during the freezing process. Model estimates of gas diffusion through ice were calibrated using measurements of bulk gas content in ice cores, yielding gas transfer velocity through ice (kice) of ∼5 × 10−4 m d−1. In comparison, the effective air-sea gas transfer velocities (keff) ranged up to 0.33 m d−1 providing further evidence that very little mixed-layer ventilation takes place via gas diffusion through columnar sea ice. However, this ventilation is distinct from air-ice gas fluxes driven by sea ice biogeochemistry. The magnitude of keff showed a clear increasing trend with wind speed and current velocity beneath the ice, as well as the combination of the two. This result indicates that gas transfer cannot be uniquely predicted by wind speed alone in the presence of sea ice
Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene
Twisted-bilayer graphene (tBLG) exhibits van Hove singularities in the
density of states that can be tuned by changing the twisting angle . A
-defined tBLG has been produced and characterized with optical
reflectivity and resonance Raman scattering. The -engineered optical
response is shown to be consistent with persistent saddle-point excitons.
Separate resonances with Stokes and anti-Stokes Raman scattering components can
be achieved due to the sharpness of the two-dimensional saddle-point excitons,
similar to what has been previously observed for one-dimensional carbon
nanotubes. The excitation power dependence for the Stokes and anti-Stokes
emissions indicate that the two processes are correlated and that they share
the same phonon.Comment: 5 pages, 6 figure
Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed
The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248
We have combined new high-resolution spectra obtained with the Hubble Space
Telescope (HST) and ground-based facilities to make a comprehensive new
abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have
detected the third r-process peak elements osmium, platinum, and (for the first
time in a metal-poor star) gold, elements whose abundances can only be reliably
determined using HST. Our observations illustrate a pattern seen in other
similar halo stars with the abundances of the heavier neutron-capture elements,
including the third r-process peak elements, consistent with a scaled solar
system r-process distribution. The abundances of the lighter neutron-capture
elements, including germanium and silver, fall below that same scaled solar
r-process curve, a result similar to that seen in the ultra-metal-poor star CS
22892--052. A single site with two regimes or sets of conditions, or perhaps
two different sites for the lighter and heavier neutron-capture elements, might
explain the abundance pattern seen in this star. In addition we have derived a
reliable abundance for the radioactive element thorium. We tentatively identify
U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the
second detection of uranium in a very metal-poor halo star. Our combined
observations cover the widest range in proton number (from germanium to
uranium) thus far of neutron-capture elements in metal-poor Galactic halo
stars. Employing the thorium and uranium abundances in comparison with each
other and with several stable elements, we determine an average
cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with
that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte
The importance of quantum decoherence in brain processes
Based on a calculation of neural decoherence rates, we argue that that the
degrees of freedom of the human brain that relate to cognitive processes should
be thought of as a classical rather than quantum system, i.e., that there is
nothing fundamentally wrong with the current classical approach to neural
network simulations. We find that the decoherence timescales ~10^{-13}-10^{-20}
seconds are typically much shorter than the relevant dynamical timescales
(~0.001-0.1 seconds), both for regular neuron firing and for kink-like
polarization excitations in microtubules. This conclusion disagrees with
suggestions by Penrose and others that the brain acts as a quantum computer,
and that quantum coherence is related to consciousness in a fundamental way.Comment: Minor changes to match accepted PRE version. 15 pages with 5 figs
included. Color figures and links at
http://www.physics.upenn.edu/~max/brain.html or from [email protected].
Physical Review E, in pres
- …