502 research outputs found

    Expanded VLA Detection of 36.2 GHz Class I Methanol Masers in Sagittarius A

    Get PDF
    We report on the interferometric detection of 36.2 GHz Class I methanol emission with the new 27-40 GHz Ka band receivers available on the Expanded Very Large Array (EVLA). The brightness temperatures of the interferometric 36 GHz detections unambiguously indicate for the first time that the emission is maser emission. The 36 GHz methanol masers are not co-spatial with 1720 MHz OH masers, indicating that the two species trace different shocks. The 36 GHz and 44 GHz methanol masers, which both are collisionally pumped, do not necessarily co-exist and may trace different methanol gas. The methanol masers seem correlated with NH_3(3,3) density peaks. We favor an explanation in which the 36 GHz Class I methanol masers outline regions of cloud-cloud collisions, perhaps just before the onset of the formation of individual massive stars. The transition of the Very Large Array (VLA) to the EVLA is well under way, and these detections demonstrate the bright future of this completely renewed instrument.Comment: accepted to ApJ Letter

    The BOSS Emission-Line Lens Survey. III. : Strong Lensing of Lyα\alpha Emitters by Individual Galaxies

    Full text link
    We introduce the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line Lens Survey (BELLS) for GALaxy-Lyα\alpha EmitteR sYstems (BELLS GALLERY) Survey, which is a Hubble Space Telescope program to image a sample of galaxy-scale strong gravitational lens candidate systems with high-redshift Lyα\alpha emitters (LAEs) as the background sources. The goal of the BELLS GALLERY Survey is to illuminate dark substructures in galaxy-scale halos by exploiting the small-scale clumpiness of rest-frame far-UV emission in lensed LAEs, and to thereby constrain the slope and normalization of the substructure-mass function. In this paper, we describe in detail the spectroscopic strong-lens selection technique, which is based on methods adopted in the previous Sloan Lens ACS (SLACS) Survey, BELLS, and SLACS for the Masses Survey. We present the BELLS GALLERY sample of the 21 highest-quality galaxy--LAE candidates selected from 1.4×106\approx 1.4 \times 10^6 galaxy spectra in the BOSS of the Sloan Digital Sky Survey III. These systems consist of massive galaxies at redshifts of approximately 0.5 strongly lensing LAEs at redshifts from 2--3. The compact nature of LAEs makes them an ideal probe of dark substructures, with a substructure-mass sensitivity that is unprecedented in other optical strong-lens samples. The magnification effect from lensing will also reveal the structure of LAEs below 100 pc scales, providing a detailed look at the sites of the most concentrated unobscured star formation in the universe. The source code used for candidate selection is available for download as a part of this release.Comment: 14 pages, 5 figures, accepted for publication in the ApJ (ApJ, 824, 86). Minor edits to match the ApJ published versio

    X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    Full text link
    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM)/intra-cluster medium (ICM) in both active and normal galaxies at 0.3 <= z <= 1.3. For both active galactic nuclei (AGN) host galaxy and normal galaxy samples that are matched in restframe color, luminosity, and redshift distribution, we tentatively detect excess X-ray emission at scales of 1--10 arcsec at a few sigma significance in the surface brightness profiles. The exact significance of this detection is sensitive to the true characterization of Chandra's point spread function. The observed excess in the surface brightness profiles is suggestive of lower extended emission in AGN hosts compared to normal galaxies. This is qualitatively similar to theoretical predictions of the X-ray surface brightness profile from AGN feedback models, where feedback from AGN is likely to evacuate the gas from the center of the galaxy/cluster. We propose that AGN that are intrinsically under-luminous in X-rays, but have equivalent bolometric luminosities to our sources will be the ideal sample to study more robustly the effect of AGN feedback on diffuse ISM/ICM gas.Comment: Accepted in PAS

    Gas infall towards Sgr A* from the clumpy circumnuclear disk

    Full text link
    We present the first large-scale mosaic performed with the Submillimeter Array (SMA) in the Galactic center. We have produced a 25-pointing mosaic, covering a ~2' x 2' area around Sgr A*. We have detected emission from two high-density molecular tracers, HCN(4-3) and CS(7-6), the latter never before reported in this region. The data have an angular resolution of 4.6" x 3.1", and the spectral window coverage is from -180 km/s to 1490 km/s for HCN(4-3) and from -1605 km/s to 129 km/s for CS(7-6). Both molecular tracers present a very clumpy distribution along the circumnuclear disk (CND), and are detected with a high signal-to-noise ratio in the southern part of the CND, while they are weaker towards the northern part. Assuming that the clumps are as close to the Galactic center as their projected distances, they are still dense enough to be gravitationally stable against the tidal shear produced by the supermassive black hole. Therefore, the CND is a non-transient structure. This geometrical distribution of both tracers suggests that the southern part of the CND is denser than the northern part. Also, by comparing the HCN(4-3) results with HCN(1-0) results we can see that the northern and the southern parts of the CND have different excitation levels, with the southern part warmer than the northern. Finally, we compare our results with those obtained with the detection of NH3, which traces the warmer and less dense material detected in the inner cavity of the CND. We suggest that we are detecting the origin point where a portion of the CND becomes destabilized and approaches the dynamical center of the Milky Way, possibly being impacted by the southern streamer and heated on its way inwards.Comment: 35 pages, 25 figures, 2 tables, accepted for publication in ApJ, emulate-apj styl
    corecore