1,009 research outputs found

    A Case Report on Mandibular Second Molar Regarding Single C-Shaped Canal

    Get PDF
    C-shaped canal variation is commonly seen in mandibular second molars. Extra canals is not always a variation in root canals. Radiograph is a must for the identification of single canal. Thorough idea of the proper anatomy of root canals is utmost important to diagnose the variations

    Process Modeling And Techno-Economic Analysis Of Zeolite Membrane Separation Processes

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2018. Major: Chemical Engineering. Advisors: Michael Tsapatsis, Prodromos Daoutidis. 1 computer file (PDF); xiv, 140 pages.Zeolite membrane separation is considered to be a promising alternative to the traditional energy-intensive industrial separation techniques such as distillation. Currently, zeolite membranes are implemented in industry only for solvent dehydration applications. However, good separation performance is obtained at laboratory scale for various applications such as bioethanol enrichment, hydrogen recovery, natural gas purification, butane isomer separation, xylene isomer separation, etc. This progress should pave the way for the industrial implementation for other applications. Although significant progress has been made in preparation, characterization and commercialization of zeolite membranes, rigorous models, which can predict the membrane performance in industrial settings, are not available in the literature. Mathematical and process modeling plays an important role in the implementation and evaluation of any new technology or application. Thus, specific objectives of this thesis are to (i) design and develop a detailed mathematical model of a zeolite membrane separation process for accurate performance prediction under a wide variety of operating conditions, and (ii) develop and optimize a conceptual process design approach and perform a techno-economic evaluation for several significant application specific flowsheets. In this thesis, complex challenges both at the chemical engineering fundamentals and the process scale have been addressed. A detailed mathematical model of a zeolite membrane separation based on adsorption-diffusion phenomenon is formulated using Maxwell-Stefan equations. In addition to the adsorption and diffusion based transport through zeolite layer, factors such as mass transfer through the porous support, the use of a sweep gas, concentration polarization phenomenon and presence of defects are also discussed. The adsorption-diffusion model (including external resistances) is then integrated with the process-scale governing equations to assess the industrial potential of zeolite membranes. Further, conceptual process designs have been modeled and techno-economic evaluation has been performed to evaluate the scope of zeolite membrane separation for several applications in chemical and bio-based refineries, including butane isomer separation, bioethanol enrichment and propylene-propane separation. Both the stand-alone membrane systems and hybrid membrane-distillation systems have been considered. A hybrid membrane-distillation process is found to be energy efficient and economically attractive over stand-alone membrane systems. Finally, a net present value of the system is analyzed to generate a set of performance targets in term of the permeance and the membrane cost

    #11 - Sequence Analysis of Alu Repeated Elements for Primate Phylogenetic Tree Construction

    Get PDF
    Phylogenetic tree construction can be a particularly challenging and time-intensive process. This study employs a novel computational approach to phylogenetic tree construction, using the Alu repeating element, a SINE. Repetitive elements including Short and Long Interspersed Nuclear Elements (SINEs/LINEs) have successfully been applied as accurate tools for phylogenetic analysis, as they are predominately unidirectional and homoplasy-free. However, previous analysis of phylogenetic relationships using these repeating elements has been limited to a small number of isolated repeats among relatively few organisms. As a highly repetitive sequence, the Alu element and its associated subfamilies can provide detailed analysis on evolutionary divergence among species in the Order Primates. This study identified shared sequences as Alu repeating elements that were conserved in both location and base-pair sequence between the primate genomes of interest. These shared sequences, derived from the Genome Library at the University of California San Diego, were analyzed to construct individual phylogenetic trees for each of the 49 Alu subfamilies. As this method solely requires the sequence analysis of available primate genomes, this serves as a cheaper and more time-efficient approach to phylogenetic tree construction for the Order Primates relative to biochemical and anatomical analysis

    #1 - Alu-Derived Orthologous Chromosome Classification for the Primate Order

    Get PDF
    Orthologous chromosomes between any family of related species have been difficult thus far to obtain, often requiring substantial biochemical testing and computationally-intensive genomic analysis. By employing computational strategies on repeated non-coding DNA, numerous advantages to accurately determining orthologous chromosomes between species can be ascertained. Throughout the primate genome, the Alu repeated element covers 10% of the genome among higher order primates, spanning across each chromosome. These non-protein-coding sequences replicate themselves repeatedly, with each iteration allowed to mutate more than their protein-coding counterparts. Therefore, upon examining the genetic sequences of such “junk” DNA, increasingly specific distinctions can be made between any two compared primate genomes. We propose a novel strategy of matching known Alu repeats by subfamily between two species, thereby ascertaining the not only the frequency of specific Alu elements conserved, but also which where each matched pair is located on the species’ chromosomes. By collecting Alu-identified primate genomes the University of California Santa Cruz Table Browser, this methodology was applied to 12 species-specific genomes. After comparing the Alu elements between each of the primates and subsequent frequency analysis, we were able to accurately highlight what chromosomes were conserved across members of the Order Primate. In addition, we were able to use our alignment with currently accepted literature to produce orthologous chromosomes for numerous species previously not compared against one another. In conclusion, we propose a far less computationally and resource intensive solution to determining conserved chromosomal relationships among primates

    Single Canal in a Single-Rooted Mandibular Second Molar: A Paradox

    Get PDF
    During endodontic diagnosis multirooted teeth morphologically, shows variable root canal system . This case report explains the anatomical variations of root and root canals. Here it is shown that a single canal is present in mandibular second molar. Therefore we should be aware that a single canal can also be present in mandibular molar

    Local translation of yeast ERG4 mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1

    Get PDF
    Brefeldin A resistance factor 1 (Bfr1p) is a non-essential RNA-binding protein and multi-copy suppressor of brefeldin A sensitivity in Saccharomyces cerevisiae. Deletion of BFR1 leads to multiple defects, including altered cell shape and size, change in ploidy, induction of P-bodies and chromosomal mis-segregation. Bfr1p has been shown to associate with polysomes, binds to several hundred mRNAs, and can target some of them to P-bodies. Although this implies a role of Bfr1p in translational control of mRNAs, its molecular function remains elusive. In the present study, we show that mutations in RNA-binding residues of Bfr1p impede its RNA-dependent co-localization with ER, yet do not mimic the known cellular defects seen upon BFR1 deletion. However, a Bfr1 RNA-binding mutant is impaired in binding to ERG4 mRNA which encodes an enzyme required for the final step of ergosterol biosynthesis. Consistently, bfr1∆ strains show a strong reduction in Erg4p protein levels, most likely due to degradation of misfolded Erg4p. Polysome profiling of bfr1∆ or bfr1 mutant strains reveals a strong shift of ERG4 mRNA to polysomes, consistent with a function of Bfr1p in elongation or increased ribosome loading. Collectively, our data reveal that Bfr1 has at least two separable functions: one in RNA-binding and co-translational protein translocation into the ER, and one in ploidy control or chromosome segregation

    Zeolite membranes - a review and comparison with MOFs

    Get PDF
    The latest developments in zeolite membranes are reviewed, with an emphasis on the synthesis techniques, including seed assembly and secondary growth methods. This review also discusses the current industrial applications of zeolite membranes, the feasibility of their use in membrane reactors and their hydrothermal stability. Finally, zeolite membranes are compared with metal–organic framework (MOF) membranes and the latest advancements in MOF and mixed matrix membranes are highlighted
    • 

    corecore