841 research outputs found

    Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A detailed study of the angular dependence of the magnetization reversal in polycrystalline ferromagnetic (FM)/antiferromagnetic Co/IrMn bilayers with noncollinear FM and unidirectional anisotropies shows a peculiar asymmetric magnetic behavior. The anisotropy configuration is set via a field cooling (FC) procedure with the magnetic field misaligned with respect to the easy magnetization direction of the FM layer. Different magnetization reversal modes are observed for either positive or negative angles with respect to the FC direction. The angular dependence of both coercivity and exchange bias also clearly displays the broken symmetry of the induced noncollinearity. Our findings are reproduced with a modified Stoner-Wohlfarth model including the induced anisotropy configuration. Our results highlight the importance of the relative angle between anisotropies in exchange bias systems, opening a new path for the tailoring of their magnetic properties

    Role of anisotropy configuration in exchange-biased systems

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.We present a systematic study of the anisotropy configuration effects on the magnetic properties of exchange-biased ferromagnetic/antiferromagnetic (FM/AFM) Co/IrMn bilayers. The interfacial unidirectional anisotropy is set extrinsically via a field cooling procedure with the magnetic field misaligned by an angle bFC with respect to the intrinsic FM uniaxial anisotropy. High resolution angular dependence in-plane resolved Kerr magnetometry measurements have been performed for three different anisotropy arrangements, including collinear bFC =0º and two opposite noncollinear cases. The symmetry breaking of the induced noncollinear configurations results in a peculiar nonsymmetric magnetic behavior of the angular dependence of magnetization reversal, coercivity, and exchange bias. The experimental results are well reproduced without any fitting parameter by using a simple model including the induced anisotropy configuration. Our finding highlights the importance of the relative angle between anisotropies in order to properly account for the magnetic properties of exchange-biased FM/AFM systems

    Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    Full text link
    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomenaThis work was supported in part by the Spanish MINECO through Projects No. MAT2012-39308, No. FIS2013-40667-P, No. MAT2011-25598, and No. MAT2014-52477-C5-3-P, and by the Comunidad de Madrid through Project No. S2013/MIT-2850 (NANOFRONTMAG-CM). P.P. and A.B. acknowledge support through the Marie Curie AMAROUT EU Programme, and through MINECO “Juan de la Cierva” (JCI-2011-09602) and “Ramón y Cajal” contract

    The prescribed mean curvature equation in weakly regular domains

    Get PDF
    We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a \textit{generalized Gauss-Green theorem} based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a \textit{weak Young's law} for (Λ,r0)(\Lambda,r_{0})-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector fields have been now extended and moved in a self-contained paper available at: arXiv:1708.0139
    corecore