6,918 research outputs found
Quantum steering ellipsoids, extremal physical states and monogamy
A Corrigendum for this article has been published in 2015 New J. Phys. 17 019501Any two-qubit state can be faithfully represented by a steering ellipsoid inside the Bloch sphere, but not every ellipsoid inside the Bloch sphere corresponds to a two-qubit state. We give necessary and sufficient conditions for when the geometric data describe a physical state and investigate maximal volume ellipsoids lying on the physical-unphysical boundary. We derive monogamy relations for steering that are strictly stronger than the Coffman-Kundu- Wootters (CKW) inequality for monogamy of concurrence. The CKW result is thus found to follow from the simple perspective of steering ellipsoid geometry. Remarkably, we can also use steering ellipsoids to derive non-trivial results in classical Euclidean geometry, extending Eulers inequality for the circumradius and inradius of a triangle.The EPSRC and the ARC Centre of Excellence grant no. CE110001027. DJ is funded by the Royal
Society. TR would like to thank the Leverhulme Trust. SJ acknowledges EPSRC grant EP/
K022512/1
Composite Cluster States and Alternative Architectures for One- Way Quantum Computation
We propose a new architecture for the measurement-based quantum computation
model. The new design relies on small composite light-atom primary clusters.
These are then assembled into cluster arrays using ancillary light modes and
the actual computation is run on such a cellular cluster. We show how to create
the primary clusters, which are Gaussian cluster states composed of both light
and atomic modes. These are entangled via QND interactions and beamsplitters
and the scheme is well described within the continuous-variable covariance
matrix formalism.Comment: arXiv admin note: text overlap with arXiv:1007.040
Late Light Curves of Normally-Luminous Type Ia Supernovae
The use of Type Ia supernovae as cosmological tools has reinforced the need
to better understand these objects and their light curves. The light curves of
Type Ia supernovae are powered by the nuclear decay of . The late time light curves can provide insight into the behavior of
the decay products and their effect of the shape of the curves. We present the
optical light curves of six "normal" Type Ia supernovae, obtained at late times
with template image subtraction, and the fits of these light curves to
supernova energy deposition models.Comment: Proceedings of Astronomy with Radioactivities V Conferenc
IC 4406: a radio-infrared view
IC 4406 is a large (about 100'' x 30'') southern bipolar planetary nebula,
composed of two elongated lobes extending from a bright central region, where
there is evidence for the presence of a large torus of gas and dust. We show
new observations of this source performed with IRAC (Spitzer Space Telescope)
and the Australia Telescope Compact Array. The radio maps show that the flux
from the ionized gas is concentrated in the bright central region and
originates in a clumpy structure previously observed in H_alpha, while in the
infrared images filaments and clumps can be seen in the extended nebular
envelope, the central region showing toroidal emission. Modeling of the
infrared emission leads to the conclusion that several dust components are
present in the nebula.Comment: 22 pages, 7 figures, accepted for publication in The Astrophysical
Journal; v.2 has changes in both figures and content; preprint forma
Integrating remote sensing datasets into ecological modelling: a Bayesian approach
Process-based models have been used to simulate 3-dimensional complexities of
forest ecosystems and their temporal changes, but their extensive data
requirement and complex parameterisation have often limited their use for
practical management applications. Increasingly, information retrieved using
remote sensing techniques can help in model parameterisation and data
collection by providing spatially and temporally resolved forest information. In
this paper, we illustrate the potential of Bayesian calibration for integrating such
data sources to simulate forest production. As an example, we use the 3-PG
model combined with hyperspectral, LiDAR, SAR and field-based data to
simulate the growth of UK Corsican pine stands. Hyperspectral, LiDAR and
SAR data are used to estimate LAI dynamics, tree height and above ground
biomass, respectively, while the Bayesian calibration provides estimates of
uncertainties to model parameters and outputs. The Bayesian calibration
contrasts with goodness-of-fit approaches, which do not provide uncertainties
to parameters and model outputs. Parameters and the data used in the
calibration process are presented in the form of probability distributions,
reflecting our degree of certainty about them. After the calibration, the
distributions are updated. To approximate posterior distributions (of outputs
and parameters), a Markov Chain Monte Carlo sampling approach is used (25
000 steps). A sensitivity analysis is also conducted between parameters and
outputs. Overall, the results illustrate the potential of a Bayesian framework for
truly integrative work, both in the consideration of field-based and remotely
sensed datasets available and in estimating parameter and model output uncertainties
Evidence of a Curved Synchrotron Spectrum in the Supernova Remnant SN 1006
A joint spectral analysis of some Chandra ACIS X-ray data and Molonglo
Observatory Synthesis Telescope radio data was performed for 13 small regions
along the bright northeastern rim of the supernova remnant SN 1006. These data
were fitted with a synchrotron radiation model. The nonthermal electron
spectrum used to compute the photon emission spectra is the traditional
exponentially cut off power law, with one notable difference: The power-law
index is not a constant. It is a linear function of the logarithm of the
momentum. This functional form enables us to show, for the first time, that the
synchrotron spectrum of SN 1006 seems to flatten with increasing energy. The
effective power-law index of the electron spectrum is 2.2 at 1 GeV (i.e., radio
synchrotron-emitting momenta) and 2.0 at about 10 TeV (i.e., X-ray
synchrotron-emitting momenta). This amount of change in the index is
qualitatively consistent with theoretical models of the amount of curvature in
the proton spectrum of the remnant. The evidence of spectral curvature implies
that cosmic rays are dynamically important instead of being "test" particles.
The spectral analysis also provides a means of determining the critical
frequency of the synchrotron spectrum associated with the highest-energy
electrons. The critical frequency seems to vary along the northeastern rim,
with a maximum value of 1.1e17 (0.6e17 - 2.1e17) Hz. This value implies that
the electron diffusion coefficient can be no larger than a factor of ~4.5-21
times the Bohm diffusion coefficient if the velocity of the forward shock is in
the range 2300-5000 km/s. Since the coefficient is close to the Bohm limit,
electrons are accelerated nearly as fast as possible in the regions where the
critical frequency is about 1.0e17 Hz.Comment: 41 pages, 8 figures, accepted by Ap
Summation and transformation formulas for elliptic hypergeometric series
Using matrix inversion and determinant evaluation techniques we prove several
summation and transformation formulas for terminating, balanced,
very-well-poised, elliptic hypergeometric series.Comment: 21 pages, AMS-LaTe
A high-resolution radio survey of the Vela supernova remnant
This paper presents a high-resolution radio continuum (843 MHz) survey of the
Vela supernova remnant. The contrast between the structures in the central
pulsar-powered nebula of the remnant and the synchrotron radiation shell allows
the remnant to be identified morphologically as a member of the composite
class. The data are the first of a composite remnant at spatial scales
comparable with those available for the Cygnus Loop and the Crab Nebula, and
make possible a comparison of radio, optical and soft X-ray emission from the
resolved shell filaments. The survey, made with the Molonglo Observatory
Synthesis Telescope, covers an area of 50 square degrees at a resolution of
43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at
http://astro.berkeley.edu/~dbock/papers/); AJ, in pres
Radio Observations of the Supernova Remnant Candidate G312.5-3.0
The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850
MHz have revealed a number of previously unknown radio sources. One such
source, G312.5-3.0 (PMN J1421-6415), has been observed using the
multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at
frequencies of 1380 MHz and 2378 MHz. Further observations of the source were
made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency
of 843 MHz. The source has an angular size of 18 arcmin and has a distinct
shell structure. We present the reduced multi-frequency observations of this
source and provide a brief argument for its possible identification as a
supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA
- …