49 research outputs found

    Multi-color Optical Variability of the TeV Blazar Mrk 501 in the Low-State

    Full text link
    We report results based on the monitoring of the BL Lac object Mrk 501 in the optical (B, V and R) passbands from March to May 2000. Observations spread over 12 nights were carried out using 1.2 meter Mount Abu Telescope, India and 61 cm Telescope at Sobaeksan Astronomy Observatory, South Korea. The aim is to study the intra-day variability (IDV), short term variability and color variability in the low state of the source. We have detected flux variation of 0.05 mag in the R-band in time scale of 15 min in one night. In the B and V passbands, we have less data points and it is difficult to infer any IDVs. Short term flux variations are also observed in the V and R bands during the observing run. No significant variation in color (B−-R) has been detected but (V−-R) shows variation during the present observing run. Assuming the shortest observed time scale of variability (15 min) to represent the disk instability or pulsation at a distance of 5 Schwarschild radii from the black hole (BH), mass of the central BH is estimated ∼\sim 1.20 ×\times 108M⊙^{8} M_{\odot}.Comment: 4 figures, 4 tables, Accepted for publication in New Astronom

    The composition and weathering of the continents over geologic time

    Get PDF
    The composition of continental crust records the balance between construction by tectonics and destruction by physical and chemical erosion. Quantitative constraints on how igneous addition and chemical weathering have modified the continents’ bulk composition are essential for understanding the evolution of geodynamics and climate. Using novel data analytic techniques we have extracted temporal trends in sediments’ protolith composition and weathering intensity from the largest available compilation of sedimentary major element compositions: ∼15,000 samples from 4.0 Ga to the present. We find that the average Archean upper continental crust was silica-rich and had a similar compositional diversity to modern continents. This is consistent with an early Archean, or earlier, onset of plate tectonics. In the Archean, chemical weathering sequestered ∼25 % more CO2 per mass eroded for the same weathering intensity than in subsequent time periods, consistent with carbon mass balance despite higher Archean outgassing rates and more limited continental exposure. Since 2.0 Ga, over long (>0.5 Gyr) timescales, crustal weathering intensity has remained relatively constant. On shorter timescales over the Phanerozoic, weathering intensity is correlated to global climate state, consistent with a weathering feedback acting in response to changes in CO2 sources or sinks

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall
    corecore