575 research outputs found

    Dining in Tuva: Social correlates of diet and mobility in Southern Siberia during the 2nd–4th centuries CE

    Get PDF
    OBJECTIVES: Contemporary archeological theory emphasizes the economic and social complexity of Eurasian steppe populations. As a result, old notions of “nomadic” cultures as homogenously mobile and economically simple are now displaced by more nuanced interpretations. Large part of the literature on diet and mobility among Eurasian pastoralists is focused on the Bronze and Iron Ages. The underrepresentation of more recent contexts hampers a full discussion of possible chronological trajectories. In this study we explore diet and mobility at Tunnug1 (Republic of Tuva, 2nd–4th century CE), and test their correlation with social differentiation. MATERIALS AND METHODS: We compare demographic patterns (by age‐at‐death and sex) of carbon, nitrogen, and sulfur stable isotope ratios (δ(13)C, δ(15)N, and δ(34)S) among 65 humans and 12 animals from Tunnug1 using nonparametric tests and Bayesian modeling. We then compare isotopic data with data on perimortal skeletal lesions of anthropic origin and funerary variables. RESULTS: Our analyses show that: (1) diet at Tunnug1 was largely based on C(4) plants (likely millet) and animal proteins; (2) few individuals were nonlocals, although their geographic origin remains unclarified; (3) no differences in diet separates individuals based on sex and funerary treatment. In contrast, individuals with perimortal lesions show carbon and nitrogen stable isotope ratios consistent with a diet incorporating a lower consumption of millet and animal proteins. DISCUSSION: Our results confirm the previously described socioeconomic variability of steppe populations, providing at the same time new data about the economic importance of millet in Southern Siberia during the early centuries CE

    "Until death do us part". A multidisciplinary study on human- Animal co- burials from the Late Iron Age necropolis of Seminario Vescovile in Verona (Northern Italy, 3rd-1st c. BCE).

    Get PDF
    Animal remains are a common find in prehistoric and protohistoric funerary contexts. While taphonomic and osteological data provide insights about the proximate (depositional) factors responsible for these findings, the ultimate cultural causes leading to this observed mortuary behavior are obscured by the opacity of the archaeological record and the lack of written sources. Here, we apply an interdisciplinary suite of analytical approaches (zooarchaeological, anthropological, archaeological, paleogenetic, and isotopic) to explore the funerary deposition of animal remains and the nature of joint human-animal burials at Seminario Vescovile (Verona, Northern Italy 3rd-1st c. BCE). This context, culturally attributed to the Cenomane culture, features 161 inhumations, of which only 16 included animal remains in the form of full skeletons, isolated skeletal parts, or food offerings. Of these, four are of particular interest as they contain either horses (Equus caballus) or dogs (Canis lupus familiaris)-animals that did not play a dietary role. Analyses show no demographic, dietary, funerary similarities, or genetic relatedness between individuals buried with animals. Isotopic data from two analyzed dogs suggest differing management strategies for these animals, possibly linked to economic and/or ritual factors. Overall, our results point to the unsuitability of simple, straightforward explanations for the observed funerary variability. At the same time, they connect the evidence from Seminario Vescovile with documented Transalpine cultural traditions possibly influenced by local and Roman customs

    Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study

    Get PDF
    Background: The safety of the new vaccines against SARS-CoV-2 have already been shown, although data on patients with polyneuropathy are still lacking. The aim of this study is to evaluate the adherence to SARS-CoV-2 vaccination, as well as the reactogenicity to those vaccines in patients affected by neuropathy. Methods: A multicentric and web-based cross-sectional survey was conducted among patients affected by neuropathy from part of South Italy. Results: Out of 285 responders, n = 268 were included in the final analysis and n = 258 of them (96.3%) were fully vaccinated. Adherence to vaccination was higher in patients with hereditary neuropathies compared to others, while it was lower in patients with anti-MAG neuropathy (all p < 0.05). The overall prevalence of adverse events (AEs) was 61.2% and its occurrence was not associated with neuropathy type. Being female and of younger age were factors associated with higher risk of AEs, while having an inflammatory neuropathy and steroids assumption were associated with a lower risk (all p < 0.05). Younger age, having had an AE, and COVID-19 before vaccination were factors associated with symptoms worsening after vaccination (all p < 0.05). (4) Conclusions: Patients with neuropathy showed a high level of adherence to COVID-19 vaccination. Safety of vaccines in patients with neuropathies was comparable to the general population and it was more favorable in those with inflammatory neuropathy

    Activity of the EGFR-HER2 dual inhibitor afatinib in EGFR-mutant lung cancer patients with acquired resistance to reversible EGFR tyrosine kinase inhibitors

    Get PDF
    Background: The purpose of this study was to evaluate the efficacy of afatinib in EGFR-mutant metastatic NSCLC patients with acquired resistance to erlotinib or gefitinib. Materials and methods: We retrospectively analyzed the outcome of patients with EGFR-mutant advanced NSCLC treated with afatinib after failure of chemotherapy and EGFR TKIs. Results: A total of 96 individuals were included in the study. According to EGFR status, most patients (n = 63; 65.6%) harbored a deletion in exon 19, and de novo T790M mutation was detected in 2 cases (T790M and exon 19). Twenty-four (25%) patients underwent repeated biopsy immediately before starting afatinib and secondary T790M was detected in 8 (33%) samples. Among the 86 patients evaluable for efficacy, response rate was 11.6%, with a median progression free-survival (PFS) and overall survival (OS) of 3.9 and 7.3 months, respectively. No significant difference in PFS and OS was observed according to type of last therapy received before afatinib, type of EGFR mutation or adherence to Jackman criteria, and patients benefiting from afatinib therapy had longer PFS and OS (P < .001). Outcome results for repeated biopsy patients were similar to the whole population, with no evidence of response in T790M-positive patients. All patients were evaluable for toxicity, and 81% experienced an AE of any grade, with grade 3 to 4 AEs, mainly diarrhea and skin toxicity, occurring in 19 (20%) patients. Conclusion: Our results showed that afatinib has only modest efficacy in a real life population of EGFR mutant NSCLC patients with acquired resistance to erlotinib or gefitinib

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    An overview of the CMS High Granularity Calorimeter and its current status

    No full text
    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS Collaboration is preparing to replace its current endcap calorimeters for the HL-LHC era with a high-granularity calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both the electromagnetic and hadronic compartments, with 5D information (space-time-energy) read out. The proposed design uses silicon sensors for the electromagnetic section and high-irradiation regions (with fluences above 10¹⁴ neq/cm²) of the hadronic section , while in the low-irradiation regions of the hadronic section plastic scintillator tiles equipped with on-tile silicon photomultipliers (SiPMs) are used. The full HGCAL will have approximately 6 million silicon sensor channels and about 240 thousand channels of scintillator tiles. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. In this talk we present the ideas behind the HGCAL, the current status of the project, the lessons that have been learnt, in particular from beam tests as well as the design and operation of vertical test systems and the challenges that lie ahead

    Performance monitoring of the GE1/1 Triple-GEM detectors for the CMS Muon System

    No full text
    The muon system of the CMS experiment has been instrumented with two wheels of triple-GEM detectors in order to ensure redundancy in the pseudo-rapidity region 1.55-2.18 so keeping the trigger rate at an acceptable level while not compromising the CMS physics potential in Run 3 of the LHC.The station, named GE1/1, provides two additional muon hit measurements which will improve the muon tracking and triggering performance in combination with the existing CSC detectors.As the commissioning phase of the detector is ongoing, prompt assessment of the muon detection performance is crucial for adjusting the operating parameters of the detector and its electronics. This contribution will present a set of analysis tools developed for the detector performance monitoring based on tools common to all the CMS muon subdetectors. Validation of the analysis based on simulations will be discussed, together with preliminary results obtained from cosmic-ray events

    Performance monitoring of the GE1/1 Triple-GEM detectors for the CMS Muon System

    No full text
    The muon system of the CMS experiment has been instrumented with a new station of triple-GEM detectors in order to ensure redundancy in the pseudo-rapidity region 1.55<η<< |\eta| <2.18, keeping the trigger rate at an acceptable level while not compromising the CMS physics potential in Run 3 of the LHC. The station, named GE1/1, provides two additional muon track hit measurements which will improve the muon tracking and triggering performance in combination with the existing CSC detectors. As the commissioning phase of the detector is ongoing, prompt assessment of the muon detection performance is crucial for adjusting the operating parameters of the detector and its electronics. This contribution will present a set of analysis tools developed for the detector performance monitoring based on tools common to all the CMS muon subdetectors. Validation of the analysis based on simulations will be discussed, together with preliminary results obtained from cosmic-ray events
    corecore