25 research outputs found

    A National Spinal Muscular Atrophy Registry for Real-World Evidence.

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population. METHODS: The Canadian Neuromuscular Disease Registry (CNDR) undertook an iterative multi-stakeholder process to expand the existing SMA dataset to capture items relevant to patient outcomes in a post-marketing environment. The CNDR SMA expanded registry is a longitudinal, prospective, observational study of patients with SMA in Canada designed to evaluate the safety and effectiveness of novel therapies and provide practical information unattainable in trials. RESULTS: The consensus expanded dataset includes items that address therapy effectiveness and safety and is collected in a multicenter, prospective, observational study, including SMA patients regardless of therapeutic status. The expanded dataset is aligned with global datasets to facilitate collaboration. Additionally, consensus dataset development aimed to standardize appropriate outcome measures across the network and broader Canadian community. Prospective outcome studies, data use, and analyses are independent of the funding partner. CONCLUSION: Prospective outcome data collected will provide results on safety and effectiveness in a post-therapy approval era. These data are essential to inform improvements in care and access to therapy for all SMA patients

    Risk of placental abruption in relation to migraines and headaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migraine, a common chronic-intermittent disorder of idiopathic origin characterized by severe debilitating headaches and autonomic nervous system dysfunction, and placental abruption, the premature separation of the placenta, share many common pathophysiological characteristics. Moreover, endothelial dysfunction, platelet activation, hypercoagulation, and inflammation are common to both disorders. We assessed risk of placental abruption in relation to maternal history of migraine before and during pregnancy in Peruvian women.</p> <p>Methods</p> <p>Cases were 375 women with pregnancies complicated by placental abruption, and controls were 368 women without an abruption. During in-person interviews conducted following delivery, women were asked if they had physician-diagnosed migraine, and they were asked questions that allowed headaches and migraine to be classified according to criteria established by the International Headache Society. Logistic regression procedures were used to calculate odds ratios (aOR) and 95% confidence intervals (CI) adjusted for confounders.</p> <p>Results</p> <p>Overall, a lifetime history of any headaches or migraine was associated with an increased odds of placental abruption (aOR = 1.60; 95% CI 1.16-2.20). A lifetime history of migraine was associated with a 2.14-fold increased odds of placental abruption (aOR = 2.14; 95% CI 1.22-3.75). The odds of placental abruption was 2.11 (95% CI 1.00-4.45) for migraineurs without aura; and 1.59 (95% 0.70-3.62) for migraineurs with aura. A lifetime history of tension-type headache was also increased with placental abruption (aOR = 1.61; 95% CI 1.01-2.57).</p> <p>Conclusions</p> <p>This study adds placental abruption to a growing list of pregnancy complications associated with maternal headache/migraine disorders. Nevertheless, prospective cohort studies are needed to more rigorously evaluate the extent to which migraines and/or its treatments are associated with the occurrence of placental abruption.</p

    A genome-wide association study of myasthenia gravis

    Get PDF
    IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10(−8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10(−8); odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10(−8); odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10(−9); odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10(−12); odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P = 7.02 × 10(−18); odds ratio, 4.27; 95% CI, 3.92–4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P = 2.52 × 10(−11); odds ratio, 4.0; 95% CI, 3.57–4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease

    Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis

    Full text link
    BACKGROUND Patisiran, an investigational RNA interference therapeutic agent, specifically inhibits hepatic synthesis of transthyretin. METHODS In this phase 3 trial, we randomly assigned patients with hereditary transthyretin amyloidosis with polyneuropathy, in a 2:1 ratio, to receive intravenous patisiran (0.3 mg per kilogram of body weight) or placebo once every 3 weeks. The primary end point was the change from baseline in the modified Neuropathy Impairment Score+7 (mNIS+7; range, 0 to 304, with higher scores indicating more impairment) at 18 months. Other assessments included the Norfolk Quality of Life-Diabetic Neuropathy (Norfolk QOL-DN) questionnaire (range, −4 to 136, with higher scores indicating worse quality of life), 10-m walk test (with gait speed measured in meters per second), and modified body-mass index (modified BMI, defined as [weight in kilograms divided by square of height in meters]×albumin level in grams per liter; lower values indicated worse nutritional status). RESULTS A total of 225 patients underwent randomization (148 to the patisiran group and 77 to the placebo group). The mean (±SD) mNIS+7 at baseline was 80.9±41.5 in the patisiran group and 74.6±37.0 in the placebo group; the least-squares mean (±SE) change from baseline was −6.0±1.7 versus 28.0±2.6 (difference, −34.0 points; P<0.001) at 18 months. The mean (±SD) baseline Norfolk QOL-DN score was 59.6±28.2 in the patisiran group and 55.5±24.3 in the placebo group; the least-squares mean (±SE) change from baseline was −6.7±1.8 versus 14.4±2.7 (difference, −21.1 points; P<0.001) at 18 months. Patisiran also showed an effect on gait speed and modified BMI. At 18 months, the least-squares mean change from baseline in gait speed was 0.08±0.02 m per second with patisiran versus −0.24±0.04 m per second with placebo (difference, 0.31 m per second; P<0.001), and the least-squares mean change from baseline in the modified BMI was −3.7±9.6 versus −119.4±14.5 (difference, 115.7; P<0.001). Approximately 20% of the patients who received patisiran and 10% of those who received placebo had mild or moderate infusion-related reactions; the overall incidence and types of adverse events were similar in the two groups. CONCLUSIONS In this trial, patisiran improved multiple clinical manifestations of hereditary transthyretin amyloidosis

    Ketogenic diet for mitochondrial disease: potential role in treating the Multiple Symmetric Lipomatosis phenotype associated with the common MT-TK genetic mutation

    No full text
    Medicine, Faculty ofNon UBCMedicine, Department ofNeurology, Division ofPathology and Laboratory Medicine, Department ofPhysical Therapy, Department ofRadiology, Department ofReviewedFacultyResearcherOthe

    Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis

    Get PDF
    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies
    corecore