3,858 research outputs found

    Limit theorems for iterated random topical operators

    Full text link
    Let A(n) be a sequence of i.i.d. topical (i.e. isotone and additively homogeneous) operators. Let x(n,x0)x(n,x_0) be defined by x(0,x0)=x0x(0,x_0)=x_0 and x(n,x0)=A(n)x(n1,x0)x(n,x_0)=A(n)x(n-1,x_0). This can modelize a wide range of systems including, task graphs, train networks, Job-Shop, timed digital circuits or parallel processing systems. When A(n) has the memory loss property, we use the spectral gap method to prove limit theorems for x(n,x0)x(n,x_0). Roughly speaking, we show that x(n,x0)x(n,x_0) behaves like a sum of i.i.d. real variables. Precisely, we show that with suitable additional conditions, it satisfies a central limit theorem with rate, a local limit theorem, a renewal theorem and a large deviations principle, and we give an algebraic condition to ensure the positivity of the variance in the CLT. When A(n) are defined by matrices in the \mp semi-ring, we give more effective statements and show that the additional conditions and the positivity of the variance in the CLT are generic

    Semigroup identities of tropical matrices through matrix ranks

    Full text link
    We prove the conjecture that, for any nn, the monoid of all n×nn \times n tropical matrices satisfies nontrivial semigroup identities. To this end, we prove that the factor rank of a large enough power of a tropical matrix does not exceed the tropical rank of the original matrix.Comment: 13 page

    Phase segregation for binary mixtures of Bose-Einstein Condensates

    Get PDF
    We study the strong segregation limit for mixtures of Bose-Einstein condensates modelled by a Gross-Pitaievskii functional. Our first main result is that in presence of a trapping potential, for different intracomponent strengths, the Thomas-Fermi limit is sufficient to determine the shape of the minimizers. Our second main result is that for asymptotically equal intracomponent strengths, one needs to go to the next order. The relevant limit is a weighted isoperimetric problem. We then study the minimizers of this limit problem, proving radial symmetry or symmetry breaking for different values of the parameters. We finally show that in the absence of a confining potential, even for non-equal intracomponent strengths, one needs to study a related isoperimetric problem to gain information about the shape of the minimizers

    Optimized Schwarz waveform relaxation for Primitive Equations of the ocean

    Get PDF
    In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann operator and build an optimized Schwarz waveform relaxation algorithm. We establish the well-posedness of this algorithm and present some numerical results to illustrate the method

    On the Tightness of Bounds for Transients of Weak CSR Expansions and Periodicity Transients of Critical Rows and Columns of Tropical Matrix Powers

    Get PDF
    We study the transients of matrices in max-plus algebra. Our approach is based on the weak CSR expansion. Using this expansion, the transient can be expressed by max{T1,T2}\max\{T_1,T_2\}, where T1T_1 is the weak CSR threshold and T2T_2 is the time after which the purely pseudoperiodic CSR terms start to dominate in the expansion. Various bounds have been derived for T1T_1 and T2T_2, naturally leading to the question which matrices, if any, attain these bounds. In the present paper we characterize the matrices attaining two particular bounds on T1T_1, which are generalizations of the bounds of Wielandt and Dulmage-Mendelsohn on the indices of non-weighted digraphs. This also leads to a characterization of tightness for the same bounds on the transients of critical rows and columns. The characterizations themselves are generalizations of those for the non-weighted case.Comment: 42 pages, 9 figure

    Weak CSR expansions and transience bounds in max-plus algebra

    Get PDF
    This paper aims to unify and extend existing techniques for deriving upper bounds on the transient of max-plus matrix powers. To this aim, we introduce the concept of weak CSR expansions: A^t=CS^tR + B^t. We observe that most of the known bounds (implicitly) take the maximum of (i) a bound for the weak CSR expansion to hold, which does not depend on the values of the entries of the matrix but only on its pattern, and (ii) a bound for the CS^tR term to dominate. To improve and analyze (i), we consider various cycle replacement techniques and show that some of the known bounds for indices and exponents of digraphs apply here. We also show how to make use of various parameters of digraphs. To improve and analyze (ii), we introduce three different kinds of weak CSR expansions (named after Nachtigall, Hartman-Arguelles, and Cycle Threshold). As a result, we obtain a collection of bounds, in general incomparable to one another, but better than the bounds found in the literature.Comment: 32 page
    corecore