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Abstract

We study the transients of matrices in max-plus algebra. Our approach is
based on the weak CSR expansion. Using this expansion, the transient can
be expressed by max{T1, T2}, where T1 is the weak CSR threshold and T2 is
the time after which the purely pseudoperiodic CSR terms start to dominate
in the expansion. Various bounds have been derived for T1 and T2, naturally
leading to the question which matrices, if any, attain these bounds.

In the present paper we characterize the matrices attaining two particu-
lar bounds on T1, which are generalizations of the bounds of Wielandt and
Dulmage-Mendelsohn on the indices of non-weighted digraphs. This also
leads to a characterization of tightness for the same bounds on the tran-
sients of critical rows and columns. The characterizations themselves are
generalizations of those for the non-weighted case.
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1. Introduction

Max-plus algebra is a version of linear algebra developed over the max-
plus semiring, which is the set Rmax = R ∪ {−∞} equipped with the op-
erations a ⊕ b := max{a, b} (additive) and a ⊗ b := a + b (multiplicative).
This semiring has a zero 0 := −∞, neutral with respect to ⊕, and a unity
1 = 0, neutral with respect to ⊗. The multiplicative operation is invert-
ible, that is, for each α 6= 0 there exists an element α− = −α such that
α− ⊗ α = α⊗ α− = 1.

These arithmetical operations are extended to matrices and vectors in
the usual way. Matrix addition is defined by (A ⊕ B)i,j = ai,j ⊕ bi,j for
two matrices A = (ai,j) and B = (bi,j) of equal dimensions, and matrix

multiplication by (A ⊗ B)i,j =
⊕l

k=1 aik ⊗ bkj for two matrices A and B of
compatible dimensions. Here we are interested in tropical matrix powers:

At =

t times︷ ︸︸ ︷
A⊗ A⊗ A · · · ⊗ A, t ≥ 1, . (1)

assuming that A0 = I, the max-plus identity matrix, in which all diagonal
entries are equal to 1 = 0 and all off-diagonal entries are equal to 0 = −∞.

As we see, matrix powers are easy to define for natural t. As for negative
t, the problem is that the set of max-plus matrices for which inverse exists is
very scarce (see, e.g.,[6] Theorem 1.1.3 for a complete description). However,
we will make use of invertible max-plus diagonal matrices: matrices D =
(di,j) in which di,i are real for all i and di,j = −∞ when i 6= j. The inverse
of D, denoted by D−, is also a diagonal matrix with diagonal entries equal
to d−i,i for all i, so that we have D ⊗D− = D− ⊗D = I.

In what follows, the multiplication sign ⊗ will be always omitted in the
case of matrix multiplication, but always kept in the case of multiplication

by scalars. In particular, we write λ⊗t =

t times︷ ︸︸ ︷
λ⊗ . . .⊗ λ = tλ and λ⊗1/t = 1

t
λ

for λ ∈ Rmax.
The fundamental result on tropical matrix powers [9] states that if A is

irreducible then there exist a real λ and integers γ and T such that

∀t ≥ T : At+γ = λ⊗γ ⊗ At. (2)

The smallest nonnegative T for which (2) holds is called the transient of
matrix A, denoted by T (A). The transient can be shown to be independent
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of the choice of λ and γ. In fact, λ is the largest mean cycle weight in the
weighted digraph described by A. Bounds on transients have been studied
by many authors, e.g., Hartmann and Arguelles [13], Bouillard and Gau-
jal [4] Soto y Koelemeijer [22], Akian et al. [1], Charron-Bost et al. [7], and
the authors [14]. The time behavior and complexity of several real systems
can be reduced to determining the transient of max-plus matrices. These
applications include communication networks [3], cyclic scheduling [10], link-
reversal algorithms [8], network synchronizers [12], as well as transportation
and manufacturing systems [2].

An analog of the ultimate pseudoperiodicity of irreducible max-plus ma-
trices for real-valued non-negative matrices is provided by the Perron-Frobenius
theorem. The largest mean cycle weight λ is analogous to the spectral radius
of non-negative matrices. The spectral radius of stochastic matrices, i.e.,
non-negative matrices whose row sums are all 1, is equal to 1. The sequence
of powers of an irreducible stochastic matrix is known to converge to a rank-
1 stochastic matrix and the rate of convergence is known to depend on the
matrix’s spectral gap, i.e., the difference between its largest and its second
largest eigenvalue. Similarly, the transient of an irreducible max-plus matrix
depends on the difference between the largest and the second-largest mean
cycle weight.

If all matrix entries in A are restricted to 0 = −∞ or 1 = 0 then the
tropical matrix algebra becomes Boolean matrix algebra (i.e., linear algebra
over the Boolean semiring), and the associated digraph becomes unweighted.
Powers of Boolean matrices have been thoroughly studied in combinatorics
(see, e.g., [5]), and various bounds on their transient of periodicity, called
index or exponent in these cases, have been obtained. One well-known ap-
plication is the Frobenius coin problem, which can be seen as calculating the
transient of a specifically constructed graph. For general connected graphs,
Wielandt [23] proved the bound (n−1)2+1 and Dulmage and Mendelsohn [11]
proved g(n− 2) + n, where g is the girth of the graph.

Note that the same problem can be considered locally: for each pair i, j,
given γ and λ that work for (2), find the minimal Ti,j such that

∀t ≥ Ti,j : (At+γ)i,j = λ⊗γ ⊗ (At)i,j. (3)

Denoting that minimal Ti,j by Ti,j(A), we can also consider maxi∈[n] Ti,j(A)
and maxj∈[n] Ti,j(A). These quantities are called the transient of the jth
column of A and the transient of the ith row of A, respectively. The bounds
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for such transients can be much lower than those for T (A), as it was shown
by [15] in an important special case of critical rows and columns, i.e., in the
case where the index of the row or column corresponds to a critical node (see
Definition 2.7 below).

The eventual periodicity was reformulated and generalized by Sergeev
and Schneider [19, 20] via the concept of CSR expansions. They observed
that in the case of eventual periodicity of {At}t≥1 there is a big enough T for
which we have

∀t ≥ T : At = CStR, (4)

where C, S and R are constructed from A (see Definition 2.11 below) in
such a way that CStR is a purely pseudoperiodic sequence (i.e. CSt+γR =
λ⊗γ⊗CStR for any t and some λ and γ). The smallest T for which (4) holds
is equal to T (A).

In [14], we used this approach to unify and improve the known bounds
on T (A). To this aim, we introduced the so-called weak CSR expansions.
Observe that, given any A ∈ Rn×n

max , there exists a big enough T for which

∀t ≥ T : At = CStR⊕Bt. (5)

Here C, S, and R are defined as in (4) and B is a matrix obtained from A
by setting some entries to 0. The smallest number T for which (5) holds is
called the weak CSR expansion threshold and denoted by T1(A,B). In this
paper we consider only the case B = BN, where all entries with an index
corresponding to a critical node are set to 0 (see Definition 2.11 below). In
this case T1(A,BN) will be abbreviated to T1(A).

For irreducible Boolean matrices, T (A) and T1(A,BN) coincide. For re-
ducible ones, they coincide, as soon as T1(A,BN) ≥ n. This allows to hope
for extensions of bounds on exponents of graph to T1 in the framework of
max-plus algebra. In particular, Wielandt and Dulmage-Mendelsohn bounds
were extended in Theorem 4.1 of [14].

However, no information was given in [14] on the question of which classes
of matrices attain these bounds for T1(A,B). For the index of digraphs, those
results are well-known. In particular, the digraph attaining the Wielandt
bound is unique up to renumbering the nodes, and the digraphs attaining the
bound of Dulmage-Mendelsohn were studied by Shao [21]. The main results
of the present paper are Theorem 3.1, which characterizes all matrices A (or
all weighted digraphs) such that T1(A,BN) attains the Dulmage-Mendelsohn
bound, and Theorem 3.7, which characterizes those attaining the Wielandt
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bound. Unfortunately, we have not been able to characterize the matrices
that reach the bounds for other choices of B studied in [14].

On the other hand, in [15] we had proved that the same bounds (and
others) also apply to the transient of a critical row or column of matrices.
Theorems 3.6 and 3.10 characterize the matrices for which these bounds are
reached.

The paper is organized as follows. After giving preliminary definitions
and results in Section 2, we state our characterizations in Section 3.1 and
give a quick overview of how to prove them. The characterizations for the
Dulmage-Mendelsohn bound on the weak CSR threshold is then proved in
Section 4 and that for the Wielandt bound in Section 5. Finally, in Section 6,
we prove the characterizations for the transients of critical rows and columns.

2. Preliminaries

2.1. Digraphs and Walks

Most of the techniques for analyzing the max-plus matrix powers and
their behavior are based on consideration of walks on the associated weighted
digraphs. Hence it is essential to introduce the notion of weighted digraph
associated with a given max-plus matrix, as well as the related notions of
walks, connectivity, girth and cyclicity.

Definition 2.1 (Associated digraph, sub(di)graph). Let A ∈ Rn×n
max . The

digraph associated with A, denoted by D(A), is defined as the pair (N,E)
where N = {1, . . . , n} is the set of nodes and E = {(i, j) ∈ N ×N : ai,j 6= 0}
is the set of arcs connecting these nodes. Arc (i, j) has weight ai,j.

A digraph D′ = (N ′, E ′) is called a sub(di)graph of D = (N,E) if N ′ ⊆ N
and E ′ ⊆ E ∩ (N ′ ×N ′).

Definition 2.2 (Walks). A sequence i0 . . . ik, where i0, . . . , ik ∈ N , is called
a walk on a digraph D = (N,E) if for any s : 1 ≤ s ≤ k the arc (is−1, is) is
in E.
For a walk W = i0 . . . ik we define the length of the walk as l(W ) := k, which
is the number of letters in that walk (as a sequence of letters) minus one.
If i0 = ik then W = i0 . . . ik is called closed.
A closed walk with no proper closed subwalk is called a cycle.
If D = D(A) and W = i0 . . . ik then the weight of W is defined as p(W ) :=
ai0i1 ⊗ . . .⊗ aik−1ik .
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Definition 2.3 (Walk sets). Let W be a set of walks on a weighted digraph
D, and let G be a subdigraph of D. Denote p(W) := max{p(W ) : W ∈ W}
(the maximal weight of all walks in W).

The following sets of walks will be particularly useful.

1. W t(i→ j) : the set of walks from i to j that have length t.

2. W t,γ(i→ j) : the set of walks from i to j that have length t modulo γ.

3. W t,γ(i
G−→ j) : the set of walks of W t,γ(i → j) that go through a node

in G.

Observe that a sequence of nodes is not necessarily a walk. Also observe
that an easy way to change a walk into another walk is to remove closed
subwalks from a given walk, or to replace a (possibly empty) subwalk by
another walk with the same start and same end. This will be the main tool
of this article.

The following optimal walk interpretation of matrix powers is well-known:

(At)i,j = p(W t(i→ j)). (6)

See, for example, [6, Example 1.2.3].
We now give some definitions related to connectivity in digraphs.

Definition 2.4 (Connectivity). A digraph D = (N,E) is called strongly
connected if for each i, j ∈ N there is a walk from i to j.

Maximal strongly connected component of D, further abbreviated to s.c.c.,
is a maximal strongly connected subgraph of D.
A digraph is called completely reducible if for any pair of s.c.c. of D there is
no walk connecting a node of one s.c.c. to a node of another s.c.c.

Definition 2.5 (Maximal Girth). For a strongly connected digraph D, the
girth of D is defined as the minimal length of a cycle in D.
For a completely reducible digraph D, the maximal girth of D, denoted by
g(D), is defined as the maximal girth of the s.c.c.’s of D.

Although we use the same notation g(D), note that this is not what
is usually called the girth of a reducible graph, namely the least common
multiple of the girths of its s.c.c.’s, a quantity not used in this paper.

Definition 2.6 (Cyclicity). For a strongly connected graph D, the cyclicity
of D, denoted by γ(D), is defined as the greatest common divisor of all cycle
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lengths of D.
For a completely reducible digraph of D, the cyclicity of D is defined as the
least common multiple of the cyclicity of the strongly connected components
of D.

In max-plus algebra we deal not only with D(A) but also with special
subgraphs of it such as the critical graph of the following definition.

Definition 2.7 (Maximum cycle mean and critical graph). The maximum
cycle mean of A is

λ(A) = max
i1,...,ik

(ai1i2 ⊗ . . .⊗ aik−1ik ⊗ aiki1)⊗1/k. (7)

The critical graph of A, denoted by Gc(A), is a subdigraph of D(A) consisting
of all nodes and arcs of the cycles i1 . . . iki1 that attain the maximum in (7).
Such nodes and arcs are also called critical.

Definition 2.8 (Visualization). We say that A is visualized if ai,j ≤ λ(A)
for all i and j and ai,j = λ(A) whenever (i, j) is an arc of Gc(A). It is strictly
visualized if it is visualized and ai,j = λ(A) if and only if (i, j) is an arc of
Gc(A).

A scaling of A is a matrix of the form B = D−AD where D is a diagonal
matrix with finite diagonal entries. A visualization of A is a scaling that is
visualized. Likewise, a strict visualization of A is a scaling that is strictly
visualized.

Theorem 2.9 ([18]). Every A with λ(A) 6= 0 has a strict visualization.

2.2. Weak CSR Expansion

We now present important definitions, notations and facts related to the
main theme of this work.

Definition 2.10 (Kleene star). Let A ∈ Rn×n
max with λ(A) ≤ 1. Then

A∗ := I ⊕ A⊕ . . .⊕ An−1

is called the Kleene star of A. Recall that I denotes the max-plus identity
matrix (which has 1 on the diagonal and 0 off the diagonal).

7



Definition 2.11 (CSR). Let A ∈ Rn×n
max . If λ(A) 6= 0, set M = ((λ(A)− ⊗

A)γ)∗, where γ is the cyclicity of Gc(A), and define matrices C, S and R by

ci,j :=

{
mi,j, for j ∈ Gc(A),

0, otherwise,
, ri,j :=

{
mi,j, for i ∈ Gc(A),

0, otherwise,
,

si,j :=

{
ai,j, for (i, j) ∈ Gc(A),

0, otherwise.

If λ(A) = 0, let CStR be the matrix in Rn×n
max with only 0 entries for any t.

This definition is best understood in combination with Proposition 2.16
part i, which gives an optimal walk interpretation of (CStR[A])i,j: the max-
imal weight of walks connecting i to j that have length modulo γ. Optimal
walk interpretation also gives an idea why we have “division” by λ(A) in the
definition of M and hence C and R: the lengths of corresponding optimal
walks are not controlled. Informally speaking, CSR is related to turnpike
theorems in a discrete deterministic case [1] at least in some optimal long
walks most of the material should be concentrated on the critical graph so
that At is determined by St for large enough t. This also shows why there is
no “division” by λ(A) in S.

Below we also deal with some auxiliary matrices, for which the CSR terms
are (a priori) different from those derived from A. Therefore we will write
CStR[A] for a CSR term derived from A.

Definition 2.12 (BN). The Nachtigall matrix B = BN is defined as the
matrix whose entries are

(BN)i,j =

{
0, if i or j is a critical node

ai,j, else.

This is the most obvious choice of a matrix B that appears in a weak
CSR expansion, since if B = BN then Bt

i,j expresses the optimal weight of
all walks that connect i to j and do not touch any critical node of A.

Definition 2.13 (T1(A) = T1(A,BN)). The weak CSR threshold T1(A,BN)
is the least T , for which

At = CStR⊕Bt
N, t ≥ T

holds. In the sequel, T1(A,BN) is abbreviated to T1(A).
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We will further work with the following two bounds on T1(A), which
originate in the works on digraph exponents or indices of imprimitivity and
(in the case of unweighted digraphs and matrix powers over Boolean algebra)
are due to Wielandt [23] and Dulmage and Mendelsohn [11].

Definition 2.14 (Wi(n) and DM(g, n)). For any n ∈ N (the set of natural
numbers) and any 1 ≤ g ≤ n, we define

Wi(n) =

{
0, if n = 1,

(n− 1)2 + 1, otherwise.

DM(g, n) = g(n− 2) + n.

(8)

Theorem 2.15 ([14] Theorem 4.1). For A ∈ Rn×n
max and g = g(Gc(A)), we

have: T1(A) ≤ min(Wi(n),DM(g, n)).

Proposition 2.16 ([14],[20]). Let A ∈ Rn×n
max have λ(A) = 1.

(i) CSR terms have the following optimal walk interpretation:

(CStR[A])i,j = p(W t,γ(i
Gc(A)−−−→ j)) ∀i, j ∈ {1, . . . , n}

for γ being any multiple of γ(Gc(A)).

(ii) CSt+γR[A] = CStR[A] for all t ≥ 1 (periodicity).

(iii) CSt1R[A]CSt2R[A] = CSt1+t2R[A] for all t1, t2 ≥ 1 (group law).

(iv) limk→∞A
t+kγ = CStR[A] ∀t > 0. (limit property)

(v) A(CStR[A]) = (CStR[A])A = CSt+1R[A]

Parts (iii) and (v) also hold with general λ(A).

Proof. (i): This property follows from [20] Theorem 3.3, or [14] Theorem 6.1
where a more general statement is given.
(ii), (iii): These properties are shown in [20] Proposition 3.2 and Theorem
3.4.
(iv): It is obvious that λ(B) < 1 and therefore limBt = 0. The claim then
follows from the weak CSR expansion At = CStR ⊕ Bt and the periodicity
of {CStR}t≥1 (ii).
(v) can be deduced from (iv) (as could (iii)).

Extension to general λ(A) follows from the homogeneity of (iii) and (v).
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Proposition 2.17 below is an extended version of Proposition 2.16 part (i).
In particular, it builds on the idea that the CSR terms in Definition 2.11 can
be defined using any completely reducible subgraph of Gc(A) instead of the
full Gc(A).

Proposition 2.17 (cf. [14], Theorem 6.1). Let A ∈ Rn×n
max be a matrix

with λ(A) = 1 and C, S and R be the CSR terms of A with respect to some
completely reducible subgraph G of the critical graph Gc(A).

Let γ be a multiple of γ(G) and N a set of some nodes of G that contains
at least one node of every s.c.c. of G.

Then we have, for any i, j and t ∈ N:

(CStR)i,j = p
(
W t,γ(i

N−→ j)
)
, (9)

where W t,γ(i
N−→ j) :=

{
W ∈ W(i

N−→ j)
∣∣ l(W ) ≡ t (mod γ)

}
3. Theorem Statements and Proof Strategy

3.1. Statements

For any matrix A ∈ Rn×n
max and any 1 ≤ g ≤ n, we define the following

matrices.

(A1)i,j =


ai,j if j = i+ 1 and 1 ≤ i ≤ n− 1

or (i, j) ∈ {(n, 1), (g, 1)},
0 otherwise.

(10)

(B1)i,j =

{
ai,j, if i > g, j > g and j ≡g i+ 1

0, otherwise
(11)

(A2)i,j =

{
0, if (A1 ⊕B1)i,j > 0,

ai,j, otherwise.
(12)

Figure 1 shows an example of A1 and B1. The definitions of A1, B1 and
A2 imply that

A = A1 ⊕B1 ⊕ A2. (13)

We write A < B if for all i, j, ai,j < bi,j or ai,j = bi,j = −∞.
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1

2

g=3 4 5 6 7

8

9101112

Figure 1: Example of the digraph of A1 (dotted arcs) and B1 (solid arcs) For B1, only
some of the arcs are shown.

Theorem 3.1. Let A ∈ Rn×n
max with g = g(Gc(A)) ≥ 2. Then A satisfies

T1(A) = DM(g, n) if and only if there exists a renumbering of nodes such
that the following conditions hold.

1. g and n are coprime;

2. Gc(A) is strongly connected with a unique critical cycle of length g up to
choice of its first node;

3. 1 · · · g1 is critical

4. A2 < CSR[A1];

5. λ(A)⊗(j−i−1) ⊗ (B1)i,j < (A1)
j−i
i,j when j > i+ 1 , i > g and j ≡g (i+ 1);

6. (B1)
DM(g,n)−1
g+1,n < (CSDM(g,n)−1R)g+1,n[A1],

where A1, B1 and A2 are defined as in (10), (11) and (12).
The renumbering satisfying Conditions 1–6 is necessarily unique. More

precisely, it is the only one that ensures that

• 1 · · ·n1 is an Hamiltonian cycle of D(A) with the largest weight, which
is unique up to choice of its first node.

• 1 · · · g1 is critical.

Remark 3.2. Note that in the above theorem we do not assume that A
is irreducible. The same is true about all the statements in this section.
However, it follows from Condition 4 that A1 is irreducible (and aperiodic)
and thus, so is A.
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78
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Figure 2: Digraph of the example with g = 3 and n = 8

Remark 3.3. The case g = 1 turns out to be much more complicated. Al-
though some results do apply (e.g. Proposition 4.2) we were not able to
characterize the matrices reaching the bound. Notice that already in the
Boolean case the situation is more complicated and not completely under-
stood (see [21]).

On the other hand, if n < 2g the situation is simpler : j ≡g i + 1 with
i, j > g holds if and only if j = i + 1 and i, j > g. In this case Conditions 5
and 6 above hold automatically. For Condition 6, note that D(B1) is acyclic
hence Bn−g

1 = 0.

Remark 3.4. The index of D(A1) reaches the bound DM(g, n). It is easy to
recover the characterization of such graphs obtained in [21] from the theorem.

Let us see what Theorem 3.1 means on an example.

Example 3.5. We fix g = 3 and n = 8. The theorem says that any matrix
of this type that reaches the bound can be decomposed as in Equations (10),
(11),(12) with 1231 as critical cycle. Let us assume that (A1)1,2 = (A1)2,3 =
(A1)3,1 = 0 and all other finite entries of A1 equal −1. (See. Figure 2.)

Let us compute CSR[A1] with Scicoslab (a fork from Scilab which incor-
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porates the MaxPlus Toolbox). We get

CSR[A1] =



−12 0 −6 −13 −2 −9 −16 −5
−6 −12 0 −7 −14 −3 −10 −17
0 −6 −12 −1 −8 −15 −4 −11
−11 −17 −5 −12 −19 −8 −15 −22
−4 −10 −16 −5 −12 −19 −8 −15
−15 −3 −9 −16 −5 −12 −19 −8
−8 −14 −2 −9 −16 −5 −12 −19
−1 −7 −13 −2 −9 −16 −5 −12


The colored entries are those for which (A2)i,j = 0 and thus Condition 4 is
trivial.

For those entries, Conditions 2 and 3 mean that (B1)6,4, (B1)7,5, (B1)8,6 <
2, while Condition 5 means that (B1)4,8 < −4.

Finally, get

T1(A) = DM(g, n) ⇐⇒



(B1)
25
4,8 < −22 (Condition 6)

A <



−12 0= −6 −13 −2 −9 −16 −5
−6 −12 0= −7 −14 −3 −10 −17
0= −6 −12 −1= −8 −15 −4 −11
−11 −17 −5 −12 −1= −8 −15 −4
−4 −10 −16 −5 −12 −1= −8 −15
−15 −3 −9 2 −5 −12 −1= −8
−8 −14 −2 −9 2 −5 −12 −1=

−1= −7 −13 −2 −9 2 −5 −12


,

where the matrix inequality means that each entry of A should be equal to the
corresponding entry if it is denoted by = and strictly less than it otherwise.

A computation of B25
1 shows that Condition 6 can not be removed.

For instance, it will be satisfied for (B1)6,4 = (B1)7,5 = (B1)8,6 = −1 not
for (B1)6,4 = (B1)7,5 = (B1)8,6 = 0.

In [15][Lemma 8.2], we have noticed that for any matrix A with λ(A) 6= 0,
the maximal transient of its critical rows or columns is at least the index of
its critical graph, so that if the index of Gc(A) reaches the bound, so does the
transient of one row and one column. The following shows that the converse
is also true.
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Theorem 3.6. Let A ∈ Rn×n
max and g = g(Gc(A)). Then the transient of the

critical rows and columns of A is equal to DM(g, n) if and only if its critical
graph has index DM(g, n).

Theorem 3.7. Let A ∈ Rn×n
max . Then, T1(A) = Wi(n) if and only if there

exists a renumbering of nodes such that

1. g(Gc(A)) = n − 1 and 1 · · · (n − 1)1 is critical, or g(Gc(A)) = n and
1 · · ·n1 is critical,

2. A2 < CSR[A1],

where A1 and A2 are defined as in (10) and (12) with g = n−1 in both cases.
The renumbering satisfying these conditions is necessarily unique. More

precisely, it is the only one that ensures that

• 1 · · ·n1 is an Hamiltonian cycle with the largest weight, which is unique
up to choice of its first node.

• 1 · · · (n− 1)1 is a cycle of length n− 1 with the largest weight, which is
unique up to choice of its first node.

Remark 3.8. The digraph D(A1) is exactly the unique (up to renumbering)
digraph whose index reaches the bound Wi(n).

Let us see what Theorem 3.7 means on an example.

Example 3.9. We fix g = n = 8. The theorem says that any matrix of
this type that reaches the bound can be decomposed as in Equations (10)
and ,(12) with g = 7. Let us assume that (A1)i,i+1 = (A1)8,1 = 0 and
(A1)7,1 = −1. (See. Figure 3.)

Let us compute CSR[A1] with Scicoslab. We get

CSR[A1] =



−7 0 −1 −2 −3 −4 −5 −6
−6 −7 0 −1 −2 −3 −4 −5
−5 −6 −7 0 −1 −2 −3 −4
−4 −5 −6 −7 0 −1 −2 −3
−3 −4 −5 −6 −7 0 −1 −2
−2 −3 −4 −5 −6 −7 0 −1
−1 −2 −3 −4 −5 −6 −7 0
0 −1 −2 −3 −4 −5 −6 −7


14
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Figure 3: Digraph of the example with g = n = 8

The colored entries are those for which Ai,j = (A1)i,j and thus there is nothing
to check. A satisfies T1(A) = Wi(8) if and only if each other entry of A is
strictly less than the corresponding entry of CSR[A1].

For the transient of critical rows or columns, we get:

Theorem 3.10. Let A ∈ Rn×n
max . Then the transient of the critical rows and

columns of A is equal to Wi(n) if and only if it is of the form A = A1 ⊕ A2

such that the index of D(A1) is Wi(n), A1 has a critical Hamiltonian cycle,
and A2 < CSR[A1].

In contrast with the previous case, the critical graph need not have in-
dex Wi(n). It can also be a Hamiltonian cycle, and only D(A1) has in-
dex Wi(n).

3.2. Overview of Proofs

Each of the next section is devoted to the proof of one of the main the-
orems (Theorem 3.1 and 3.7). The proof’s strategy is the same for both
theorems. It relies on the classical interpretation of entries of powers as
weight of walks (cf. Equations (6) and (9)).

The necessity of the conditions is proved in 3 steps :

• Firstly, we use (slight refinements of) the results of [14] to prove prop-
erties of the critical graph. (Proposition 4.2)

• Then we introduce a special type of walks with given start and end
nodes, which we call ’interesting walks’. Loosely speaking, these walks
are optimal in terms of both weight and length (Definition 4.8). The
structure of interesting walks is then studied in Propositions 4.9, 4.11
and 5.1. In particular, interesting walks contain a Hamiltonian cycle
that gives the renumbering of nodes up to where to start. The start is
determined by the critical nodes.
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• Finally, we use our results on the structure of interesting walks to show
that if one condition is not fulfilled, then one can build new shorter
walks and thus the interesting walk would not be optimal, either in
terms of weight, or length.

The proof of the sufficiency is based on the fact that the index of D(A1)
reaches the bound and the following perturbation lemma, which will also be
used in the proof of necessity and we think is interesting for its own sake.

Lemma 3.11 (Perturbation lemma). If A = A1 ⊕ A2 with A1, A2 ∈ Rn×n
max

such that A2 < CSR[A1], then, we have λ(A) = λ(A1), Gc(A) = Gc(A1),
CStR[A] = CStR[A1] for all t and T1(A) = T1(A1).

This lemma will be proved, together with all other statements, in the
next section.

4. Matrices attaining the Dulmage-Mendelsohn Bound

This section will be devoted to the proof of Theorem 3.1. In the rest of
the work we assume λ(A) = 1 (because neither T1(A), nor the conditions of
the theorem are modified if A is multiplied by a scalar) and set g := g(Gc(A)).

Observe that λ(A) = 1 ensures that all closed walk have nonpositive
weight, so that removing a closed subwalk from a given walk can only increase
its weight. A fact that we will use extensively in this paper.

4.1. Perturbation Lemmas

In this section, we prove two lemmas, to be used in both ways of the
equivalence. The first one was announced at the end of Section 3.1.

If for two matrices A = (ai,j)
n
i,j=1 and B = (bi,j)

n
i,j=1 we have ai,j ≤ bi,j for

all i, j and that ai,j = bi,j ⇒ ai,j = bi,j = −∞ then we write A < B. Observe
that if A < B and C ≤ D then A⊗ C < B ⊗D and C ⊗ A < D ⊗B.

Proof of Perturbation Lemma 3.11. If λ(A1) = 0, then A2 = 0, A = A1 and
there is nothing to prove. Otherwise, since A2 < CSR[A1] is invariant under
A 7→ λ⊗ A, we assume without loss of generality that λ(A1) = 1.

To prove the first equalities, consider a diagonal matrix D that pro-
vides a visualization scaling for A1. Then we obtain D−AD = D−A1D ⊕
D−A2D where D−A2D < D−CSR[A1]D ≤ 1. So D−AD is visualized
and (D−AD)i,j = 1 if and only if (D−A1D)i,j = 1, which implies that
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λ(A) = 1 = λ(A1) and Gc(A) = Gc(A1), which are the first two equalities in
the statement of Lemma 3.11.

To prove the remaining two equalities, let us first prove the following
statement by induction:

∀t ≥ 1 ∃Rt : At = At1 ⊕Rt, where Rt < CStR[A1]. (14)

For t = 1, set R1 = A2.
Suppose that (14) holds. Let us prove that it also holds when t is replaced

by t+ 1. We have

At+1 = (A1 ⊕R1)(A
t
1 ⊕Rt) = At+1

1 ⊕R1A
t
1 ⊕ A1Rt ⊕R1Rt. (15)

We bound from above the last three terms on the right-hand side of (15).
We have:

1. R1A
t
1 < CSR[A1]A

t
1 = CSt+1R[A1]. by Proposition 2.16 part (v)

2. A1Rt < A1CS
tR[A1] = CSt+1R[A1], by Proposition 2.16 part (v).

3. R1Rt < CSR[A1]CS
tR[A1] = CSt+1R[A1], by Proposition 2.16 part (iii).

Thus At+1 = At+1
1 ⊕ Rt+1 where Rt+1 = R1A

t
1 ⊕ A1Rt ⊕ R1Rt satisfies

Rt+1 < CSt+1R.
Observe that At = At1 for t ≥ T1(A1). Indeed, for any such t,

At = At1 ⊕Rt = CStR[A1]⊕Bt[A1]⊕Rt

= CStR[A1]⊕Bt[A1] = At1.

From this equality, the periodicity of CSR and the observation that
limk→∞((B[A1])

t+kσ) = 0 since λ(B[A1]) < 1, we deduce that A and A1

have the same CSR since

CStR[A] = lim
k→∞

At+kσ = lim
k→∞

At+kσ1 = CStR[A1],

where σ is the cyclicity of Gc(A). Thus CStR[A] = CStR[A1] for all t.
To prove the remaining equality T1(A) = T1(A1), we first observe that

(Bt[A])i,j ≤ (At)i,j ≤ (CStR[A]⊕Bt[A])i,j, and hence

(At)i,j 6= (CStR[A]⊕Bt[A])i,j ⇔ (At)i,j < (CStR[A])i,j.
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Next we use that (Bt[A1])i,j ≤ (At1)i,j ≤ (CStR[A1] ⊕ Bt[A1])i,j, that At =
At1 ⊕ Rt where Rt < CStR[A1], and that CStR[A1] = CStR[A], so that we
have the following equivalences:

(At)i,j 6= (CStR[A]⊕Bt[A])i,j ⇔ (At)i,j < (CStR[A])i,j ⇔ (At1)i,j ⊕ (Rt)i,j < (CStR[A1])i,j

⇔ (At1)i,j < (CStR[A1])i,j ⇔ (At1)i,j 6= (CStR[A1]⊕Bt[A1])i,j,

thus T1(A) = T1(A1).

In this subsection and the next one, we will denote by Z0 the subgraph
consisting of the nodes and edges of the cycle 1 · · · g1.

Lemma 4.1. Let A1, B1, A2 be defined from the same matrix A by Equa-
tions (10), (11) and (12). Assume that Conditions 1 to 5 of Theorem 3.1 are
satisfied, that is Gc(A) is strongly connected and contains Z0, g and n are
coprime, A2 < CSR[A1] and B1 satisfies Condition 5. Then CStR[A1] =
CStR[A1 ⊕B1] for all t.

Proof. As in the first paragraph of the proof of Lemma 3.11 consider a diag-
onal matrix providing a visualization scaling for A1, assuming without loss of
generality that λ(A1) = 1. We then have D−A2D < D−CSR[A1]D ≤ 1, and
this shows that all arcs of D(A2) are non-critical, hence Gc(A) = Gc(A1⊕B1).
In particular, Gc(A1 ⊕ B1) is strongly connected and contains all edges of
1 · · · g1. The same is true about Gc(A1), and we also have λ(A1 ⊕B1) = 1.

Recasting the above statement about CSR in terms of walks with Propo-
sition 2.17 we have to prove for any k, l ∈ {1, . . . , n} that

max{p(W ) : W ∈ W t,g(k
Z0−→ l)[A1]} = max{p(W ) : W ∈ W t,g(k

Z0−→ l)[A1⊕B1]},

Since A1 ≤ A1 ⊕B1, we have the inequality

max{p(W ) : W ∈ W t,g(k
Z0−→ l)[A1]} ≤ max{p(W ) : W ∈ W t,g(k

Z0−→ l)[A1⊕B1])},

To prove the opposite, we need to take an arbitrary walk W ∈ W t,g(k
Z0−→

l)[A1 ⊕B1]) and prove that there exists a walk W ′ ∈ W t,g(k
Z0−→ l)[A1]) such

that p(W ) ≤ p(W ′).
There are two kinds of arcs in W that may not be in D(A1).

A. ij with j > i+ 1 > g + 1 and j ≡g i+ 1. In this case, we can replace
ij by the path i(i + 1) · · · j. The resulting walk visits even more nodes and
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hence will go through a node of Gc(A1). It has the same length modulo g.
Due to Condition 5 of Theorem 3.1, its weight is not smaller than p(W ).
Thus we can assume that W does not contain such arcs.

B. ij with j < i and j ≡g i+ 1.
Since we assumed that W contains no arc kl s.t. l > k + 1, the only arc

that go from a node to a larger node are of type k, k+ 1, thus if a subwalk of
W goes from i to s > i it goes through all nodes numbered between i and s.

IfW goes to Z0 after arc ij, it has to go through i again before reaching Z0,
because the only arc to reach Z0 from D(B1) is n1. In this case, define W1

as the closed subwalk that starts with the arc ij and follows W until it goes
back to i.

If W does not go to Z0 after arc ij, it has to come from Z0 before, so it
has to go through g, g + 1 which is the only arc leaving Z0. So, it has been
in j before reaching i and arc ij. Then, define W1 as the closed subwalk that
starts with the last occurrence of j before arc ij and follows W until it goes
back to i.

In both cases, W1 lives on D(B1) so its length is divisible by g and it can
be removed from W .

The resulting walk has the same length modulo g, goes through a node
of Z0 and has larger weight than p(W ).

Iterating the process, we build the W ′ we are looking for.

4.2. Proof of Sufficiency

Let us now prove that Conditions 1–6 imply T1(A) = DM(g, n). We
assume that the conditions are satisfied.

By Lemmas 3.11 and 4.1, we have CSR[A] = CSR[A1⊕B1] = CSR[A1].
As A2 < CSR[A1 ⊕ B1] (Condition 4 and Lemma 4.1), by Lemma 3.11

we have T1(A) = T1(A1 ⊕ B1) so we can assume that A2 = 0 and we do it
from now on.

Entry A
DM(g,n)−1
g+1,n is the largest weight of a walk W from g + 1 to n with

length DM(g, n) − 1. Let us prove p(W ) < (CSn−1R)g+1,n[A], which en-
sures that T1(A,B) ≥ DM(g, n), since in this case Atg+1,n < (CStR)[A] ⊕
Bt[A])g+1,n for t = DM(g, n)−1 (also recalling that (CStR)[A] = (CSn−1R)[A]
by the periodicity of CSR). The other inequality follows from Theorem 2.15.

Case 1. If W does not go through Z0, then it is a walk on D(B1)

and p(W ) = (B1)
DM(g,n)−1
g+1,n . Using Condition 6, we conclude that p(W ) <

(CSn−1R)g+1,n[A].
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Case 2. Assume now that W goes through Z0 and contains an arc (i, j)
such that j > i+ 1, i > g and j ≡g (i+ 1). Then we can replace this arc by
the path i(i+ 1) · · · j thus obtaining a new walk W ′. Using Condition 5, we
conclude that p(W ) < p(W ′). But, we also have p(W ′) ≤ (CSn−1R)g+1,n[A],
since W ′ visits a node of Z0 and has length n − 1 modulo g. Thus p(W ) <
p(W ′) ≤ (CSn−1R)g+1,n[A].

Case 3. Assume that W goes through Z0 and does not contain an arc
(i, j) such that j > i+1, i > g and j ≡g (i+1). Then W can be decomposed
into a path from g+ 1 to n, and some cycles. Since we assumed that A2 = 0
and W contains no arc with j > i + 1 > g, the only path from g + 1 to n is
the path that follows the numbers and has length n− 1− g, so that the total
length of the cycles is DM(g, n)− 1− (n− 1− g) = g(n− 1).

Since W goes through a node of Z0, and 1 · · ·n1 is the only cycle that
connects Z0 and D(B1), the cycle decomposition of W contains at least one
copy of the cycle 1 · · ·n1. But, again since A2 = 0, 1 · · ·n1 is the only cycle
whose length n is not a multiple of g. As this length is, moreover, coprime
with g, the walk should contain at least g copies of the cycle 1 · · ·n1. But
then their total length is gn > g(n − 1), a contradiction. Hence this case
is impossible, and the attainment of Dulmage-Mendelsohn bound has been
proved for all possible cases.

4.3. Critical Graph

The end of the section will be devoted to the proof of the necessity of
Conditions 1–6, along the lines presented in Section 3.2.

In this subsection, we prove the following proposition.

Proposition 4.2. If T1(A) = DM(g, n), then Gc(A) is strongly connected
and contains only one cycle of length g up to choice of its first node.

To prove Proposition 4.2, we will use techniques from [14] related to CSR
expansions and walks. We will first recall the main statements that will
be required, and then the proof of Proposition 4.2 will be given after the
statement of Proposition 4.7.

Using Proposition 2.17, we can define CSR terms using a s.c.c. of Gc(A)
rather than the whole Gc(A), since any s.c.c. of Gc(A) is a completely re-
ducible subgraph of Gc(A). Following [14] let G1, . . . ,Gl be the s.c.c.’s of
Gc(A) with node sets N1, . . . Nl, and let CG1 , SG1 , RG1 be the CSR terms
defined with respect to G1. Let A(1) = A, and for ν = 2, . . . , l define a matrix
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A(ν) by setting the entries of A with rows and columns in N1 ∪ . . . ∪ Nν−1
to 0, and let CGν , SGν , RGν be the CSR terms defined with respect to Gν
in A(ν). By the dimension of A(ν) we will mean the number of elements in
N\(N1 ∪ . . . ∪Nν−1).

Proposition 4.3 ([14], Corollary 6.3). If G1, · · · ,Gl are the s.c.c.’s of Gc(A),
then we have:

CStR =
l⊕

ν=1

CGνS
t
GνRGν . (16)

Let us now prove the following bound on T1(A):

Proposition 4.4. Let nν for ν = 1, . . . , l be the dimension of A(ν), and gν
for ν = 1, . . . , l be the girth of Gcν. Then

T1(A) ≤ max
ν=1,...,l

DM(gν , nν). (17)

Proof. For each ν = 1, . . . , l, the weak CSR expansion applied to A(ν) reads

(A(ν))t = CGcν (SGcν )
tRGcν ⊕ (A(ν+1))t, t ≥ T. (18)

The smallest T for which the weak CSR expansion (18) holds is bounded by
DM(gν , nν) by Theorem 2.15. If t ≥ maxν=1,...,l DM(gν , nν) then (18) holds
for all ν = 1, . . . l and by successive replacement, we have:

At =
l⊕

ν=1

CGcν (SGcν )
tRGcν ⊕ (A(l+1))t, (19)

Observing that A(l+1) = B and that the CSR terms sum up to CStR by
Proposition 4.3 we see that (19) is exactly the weak CSR expansion At =
CStR⊕Bt.

Bounds for T1(A) in [14] are based on the concept of the cycle removal
threshold defined as follows.

Definition 4.5. Let G be a subgraph of D(A) and γ ∈ N.
The cycle removal threshold T γcr(G) of G is the smallest nonnegative integer T

for which the following holds: for all walks W ∈ W(i
G−→ j) with length ≥ T ,

there is a walk V ∈ W(i
G−→ j) obtained from W by removing cycles and

possible inserting cycles of G such that l(V ) ≡ l(W ) (mod γ) and l(V ) ≤ T .
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The idea behind this definition is to be able to shorten an optimal walk
while keeping it optimal and keeping its length modulo γ, thus proving in-
equalities between CStR and At.

The following proposition is stated in [14] and proved there by “arith-
metical method”.

Proposition 4.6 ([14], Proposition 9.5). For A ∈ Rn×n
max and G a subgraph

of D(A) with n′ nodes, we have:

∀γ ∈ N, T γcr(G) ≤ γn+ n− n′ − 1. (20)

The next proposition can be proved using a slight generalization of [14],
Proposition 6.5 (i), which differs in the fact that G is considered as a whole
and not each s.c.c. at a time. The proof of [14] actually shows this stronger
statement.

Proposition 4.7. Let A be a square matrix such that all s.c.c.’s of Gc(A),
have the same girth g. Let G be the subgraph of Gc(A) consisting of all cycles
of length g. Then

T1(A) ≤ T gcr(G)− g + 1.

We are finally able to prove Proposition 4.2.

Proof of Proposition 4.2. Let us assume that T1(A) = DM(g, n). We
want to prove that Gc(A) is strongly connected and has only one cycle with
length g, up to choice of its first node.

To apply Proposition 4.7 we need to show that all s.c.c’s of Gc(A) have
girth g.

Otherwise, w.r.t. the notation of Proposition 4.4 let Gc1 be a component
with girth g1 < g. We have DM(g1, n1) < DM(g, n) (recall that DM(g, n) =
g(n − 2) + n). For all other components of Gc(A) we have DM(gν , nν) <
DM(g, n) since nν < n. Therefore using the bound of Proposition 4.4 we
would have T1(A) < DM(g, n).

Now, we will combine Propositions 4.7 and 4.6 to show both the con-
nectivity of the Gc(A) and the uniqueness of the shortest critical cycle. Let
us denote by n′ the number of nodes of the graph G of Proposition 4.7 and
set γ = g in (20) (see Proposition 4.6). Then we have

T1(A) ≤ T gcr(G)− g + 1 ≤ (gn+ n− n′ − 1)− g + 1 = DM(g, n) + g − n′.
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If Gc(A) is not strongly connected then G is not and n′ ≥ 2g. If Gc(A) is
strongly connected but contains more than one cycle, then n′ > g. Indeed,
one can not have two critical cycles of length g with the same set of nodes,
because it would build a shorter cycle so that g would not be the girth
anymore. Thus, in both cases, we would have n′ > g and T1(A) < DM(g, n).

Finally, Gc(A) is strongly connected and contains exactly one cycle of
length g, up to choice of its first node.

4.4. The Interesting Walk and Its Structure

In this section we assume that T1(A) = DM(g, n). and deduce from this
the structure of special walks which we call interesting.

By Proposition 4.2, there is a unique critical cycle of length g up to choice
of its first node. In what follows, the subgraph consisting of all nodes and
edges of this cycle will be denoted by Z0.

Definition 4.8. A walk W ∈ W t(i
Z0−→ j) is called twice optimal if it has

minimal length among all the walks with maximal weight in the setW t,g(i
Z0−→

j). It is called interesting if it is twice optimal and has length DM(g, n)+g−1.

Interesting walks are twice optimal with maximal possible length among
all entries and matrices. Their particular structure, described in Proposi-
tion 4.11 will define matrices A1, A2, B1.

Proposition 4.9. If T1(A) = DM(g, n), then there exists (i, j) such that
(ADM(g,n)−1)i,j < (CSDM(g,n)−1R)i,j. For any such (i, j) there is an interesting
walk from i to j.

Proof. We set t = DM(g, n)− 1.
If there is no (i, j) such that (ADM(g,n)−1)i,j < (CSDM(g,n)−1R)i,j, then for

all i, j we have (At)i,j ≥ (CStR)i,j.
By definition of B, we have (At)i,j ≥ (Bt)i,j for all t, i, j. We hence have

(At)i,j ≥ (Bt)i,j⊕(CStR)i,j. We always have the opposite inequality (At)i,j ≤
(Bt)i,j ⊕ (CStR)i,j by distinguishing whether a walk visits the critical graph
or not. Hence (At)i,j = (Bt)i,j ⊕ (CStR)i,j. But this means T1(A) ≤ t <
DM(g, n), which contradicts T1(A) = DM(g, n).

Let us prove the second part of the proposition.
Proposition 4.6, applied with G = Z0, γ = g and n′ = g, implies that

twice optimal walks have length at most t+ g (alternatively, see the proof of
[14] Theorem 4.1).
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Now, if there is no interesting walk from i to j it means that the set

W t,g(i
Z0−→ j) contains a walk with optimal weight and length strictly less

than t + g. However, this length is congruent to t modulo g, hence it is less
than or equal to t and, furthermore, can be made equal to t by inserting copies
of Z0. The weight of this walk is (CSDM(g,n)−1R)i,j by Proposition 2.17, so
(ADM(g,n)−1)i,j ≥ (CSDM(g,n)−1R)i,j.

Proposition 4.10. If n = g = 2 and A ∈ R2×2
max, then T1(A) = DM(2, 2) = 2

if and only if a11 6= a22.

Proof. Observe that n = g = 2 implies that Gc(A) consists of the nodes
and arcs of the unique cycle of length 2 up to choice of its first node, and
that both nodes of D(A) are critical. Thus BN = 0, T1(A) = T (A) and
T1(A) < 2⇔ A3 = A.

Let us notice that (a11)
⊗2 < a12 ⊗ a21 = λ(A) = 1 and a⊗222 < a12 ⊗ a21 =

λ(A) = 1, and compute A3.
Consider first the off-diagonal entries. In this case we have

(A3)k,l = max{ak,lal,kak,l, (ak,k)2ak,l, ak,l(al,l)2} = ak,l

for any such k, l ∈ {1, 2}.
Consider now

(A3)k,k = max{(ak,k)3, ak,lal,lal,k, ak,lak,kal,k}
= max{ak,k, al,l},

for k, l ∈ {1, 2} and l 6= k. This is not equal to ak,k if and only if ak,k < al,l.
Finally, A3 = A ⇔ ak,k = max{ak,k, al,l} ⇔ a1,1 = a2,2 and the proof is
complete.

The following proposition, to be proved in Subsection 4.5, shows unique-
ness and characterizes the interesting walk in the remaining cases of g and n.

Proposition 4.11. Let A ∈ Rn×n
max be such that g = g(Gc(A)) ≥ 2, T1(A) =

DM(g, n), and not n = g = 2. For any interesting walk W0, there is a
renumbering of the nodes such that 1, . . . , g are the nodes of the (only) critical
cycle of length g and

W0 = (g + 1) . . . n(1 . . . n)g, (21)

where (1 . . . n)g =

g times︷ ︸︸ ︷
(1 . . . n)(1 . . . n) . . . (1 . . . n).
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Corollary 4.12. Under the conditions of Proposition 4.11, D(A) has an
Hamiltonian cycle with maximal weight, unique up to choice of its first node,
which is labeled 1 . . . n1 by the renumbering stated in Proposition 4.11.

Proof. By contradiction, suppose that there is a different Hamiltonian cycle
with the largest weight. It can replace one of the copies of 1 . . . n1 in W0,
and the walk should still be interesting. However as g ≥ 2, the resulting walk
contains edges of at least two different Hamiltonian cycles, so it cannot be
represented as (21), which is in contradiction with this walk being interesting.

Remark 4.13. By Proposition 4.11 and Corollary 4.12, the Hamiltonian
cycle with maximal weight induces a renumbering of the nodes, which is
unique up to choice of the first node. Then, the first node is defined as the
end of the only edge of Z0 that does not belong to the Hamiltonian cycle.
Thus, the renumbering is unique and so is the interesting walk.

4.5. Proof of Proposition 4.11

Let us first note that the case g = n is impossible unless n = g = 2.
Indeed, if n = g > 2 then DM(g, n) = n(n−2) +n = n(n−1) > (n−1)2 + 1,
which is the Wielandt bound for the periodicity transient, so in this case
DM(g, n) cannot be attained. The case n = g = 2 has been considered in
Proposition 4.10.

The following elementary number-theoretic lemma will be especially use-
ful in what follows.

Lemma 4.14. Let a1, . . . , as ∈ Z. Then there is a nonempty subset I ⊆
{1, . . . , s} with

∑
i∈I ai ≡s 0.

This lemma will allow us to remove some cycles from a walk an keep its
length modulo s as soon as we have s cycles that do not intersect in the walk.

The first step of the proof of Proposition 4.11 is to establish properties
of the structure of interesting walks.

Lemma 4.15. In any interesting walk W0, there are exactly g occurrences
of each node of Z0 and exactly g + 1 occurrences of each node not in Z0.

Proof. This is an improvement on the proof of Theorem 2.15 in [14] with
extra care on the extremal cases. Let us first argue that the number of
occurrences does not exceed g and g + 1, respectively.
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By contradiction, let l ∈ Z0 occur k ≥ g + 1 times, then we have W0 =
V0lV1l . . . lVk−1lVk where l occurs in no Vi.

We have k − 1 ≥ g and by Lemma 4.14 some of the cycles lVpl (for
p = 1, . . . , k − 1) can be removed in such a way that the resulting walk has
the same length modulo g. Moreover, the resulting walk still goes through a
node of Z0 (namely l) and has the same length modulo g meaning that W0

is not twice optimal.
Let m /∈ Z0 and decompose W0 = W1sW2 so that W1 contains only nodes

not in Z0 and s ∈ Z0. Then we have two cases:
a) One of the walks W1 or W2 does not contain m. Then the remaining walk
can have no more than g occurrences of m, otherwise these occurrences lead
to at least g cycles some of which can be removed in such a way that the
resulting walk has the same length modulo g and goes through a node of Z0,
contradicting the optimality of W0 (the weight of the resulting walk is also
not smaller since by λ(A) = 1 the weight of each cycle is not bigger than 1).
b) Both W1 and W2 contain m at least once. If there are at least two
occurrences of m in W1 then the cycle between these occurrences can be
moved to W2. Hence we can assume that W1 contains m no more than once.
As in a), m can occur in W2 no more than g times, and the total number of
m’s occurrences is thus bounded by g + 1.

The total number of occurrences of all nodes in W0 is thus bounded from
above by g2+(n−g)(g+1) = n−g+ng. Observe now that the total number
of these occurrences is exactly g(n − 1) + n = n − g + ng, since the length
of W0 is DM(g, n) + g− 1 = g(n− 1) + n− 1. Hence each node in Z0 occurs
exactly g times and each node not in Z0 exactly g + 1 times.

Lemma 4.16 (Interlacing). Let i ∈ Z0 and j /∈ Z0.

(i) In any interesting walk, there is exactly one occurrence of node j be-
tween two consecutive occurrences of i.

(ii) In any interesting walk, there is exactly one occurrence of j before the
first and exactly one after the last occurrence of i.

Proof. We are going to prove that, for each k : 0 ≤ k < g, there are exactly
k+1 occurrences of j before the (k+1)-th occurrence of i and g−k occurrences
of j after that occurrence of i. This implies both parts of the lemma.

We first show after k + 1 occurrences of i we have no more than g − k
occurrences of j, for otherwise we have k consecutive closed walks going
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i j

k closed walks g − k closed walks

Figure 4: More than g − k occurrences of j after k + 1 occurrences of i

j i

g − k − 1 closed walksk + 1 closed walks

Figure 5: More than k + 1 occurrences of j before (k + 1)-th occurrence of i

through i and at least g−k consecutive closed walks going through j. Figure 4
depicts the situation. Thus the overall number of closed walks is at least g
and by Lemma 4.14 some of these closed walks can be removed from the
walk. The resulting walk still goes through a node of Z0 (namely i) and has
the same length modulo g, so W0 is not twice optimal, a contradiction.

Let us also show that we have no more than k + 1 nodes of j before the
(k + 1)-th occurrence of i. Indeed, after the (k + 1)-th occurrence of i we
still have g − k − 1 occurrences of i by Lemma 4.15. If the hypothesis is not
true then we have g − k − 1 closed walks going through i and at least k + 1
closed walks going through j. Figure 5 depicts the situation. Thus we have
at least g closed walks in total and by Lemma 4.14 some of these closed walks
can be removed from the walk. We conclude that W0 is not twice optimal, a
contradiction.

However, the total number of occurrences of j before and after the (k+1)-
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th occurrence of i is g + 1, and therefore there are exactly k + 1 occurrences
of j before the (k + 1)-th occurrence of i, and g − k occurrences of j after
that occurrence.

Corollary 4.17. In any interesting walk, there is exactly one occurrence of
node i ∈ Z0 between every two consecutive occurrences of j /∈ Z0, and no
occurrences of i ∈ Z0 neither before the first nor after the last occurrence
of j /∈ Z0.

Lemma 4.18. Any interesting walk W0 can be represented as

W0 = PQP1V, (22)

where P and P1 contain all nodes not in Z0 exactly once and only them, Q
contains all nodes of Z0 exactly once and only them, and V is a walk starting
with a node in Z0.

Proof. Define P such that W0 = PV0, where all nodes of P are not in Z0 and
the first node of V0 is in Z0. By Lemma 4.16 part (ii), P contains all nodes
not in Z0 exactly once (and only them).

Define Q as the subpath of V0 such that V0 = QU1, where all nodes of
Q are in Z0 and the first node of U1 is not in Z0. That node also occurs
once in P . By Lemma 4.16 part (i), all nodes of Z0 should occur between
the two occurrences of that node exactly once, and therefore Q contains all
such nodes exactly once (and only them).

Define P1 such that U1 = P1V , where all nodes of P1 are not in Z0 and the
first node of V is in Z0. That node also occurs once inQ. By Lemma 4.16 part
(ii), all nodes that are not in Z0 should occur between the two occurrences
of that node exactly once, and therefore P1 contains all such nodes exactly
once (and only them).

Proof of Proposition 4.11. Let W0 be an interesting walk and P and Q
defined as in (22). We want to show

W0 = P (QP )g. (23)

We start with the decomposition (22). Define k ∈ Z0 as the last node of
Q and Q′ by Q = Q′k.
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k
P Q′ U

P1

V1

Wα, α ≥ 2

Figure 6: Structure of interesting walk W0 as of (24)

k′ k

k′

R
R

move R

Figure 7: Node k′ appears twice in C1 = kPV1k

As a first step, using (22) and observing g occurrences of k we can im-
mediately obtain

W0 = PQ′kW1kW2 . . . kWg−1kU, (24)

see Figure 6. Decomposition (22) also implies that the subpath PQ in the
beginning should be followed by a sequence P1 containing all non-critical
nodes once (and only them), in any interesting walk. Therefore we have
W1 = P1V1 for some V1.

The cycle C1 = kP1V1k contains each node (critical and non-critical) no
more than once. Indeed, if a node k′ occurred in C1 twice then we would
decompose C1 = k . . . k′Rk′ . . . k, replace the node k′ in PQ by k′Rk′ and
delete Rk′ from C1, see Figure 7. This would result in a new walk with g
consecutive closed walks some of which can be removed, resulting in a walk
of a smaller length and showing that the initial walk was not interesting, a
contradiction.
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j k j k

PQ′ P1V1

S T S ′ T ′

exchange

Figure 8: Exchange if PQ′ 6= P1V1

Since any node is contained in C1 no more than once, V1 consists of nodes
of Z0 only. Comparing (23) with (24) we need to prove that V1 = Q′ and
that P1 = P . For that, take any node j ∈ P1V1. It also occurs in PQ′ since
that path contains all nodes but k. Consider the following decompositions
PQ′k = SjTk and P1V1k = S ′jT ′k. If we assume that Q′ 6= V1 or P1 6= P
then for some j the sets of nodes of S and S ′ differ or the sets of nodes
of T and T ′ differ. Assume the latter (the case of different S and S ′ is
treated similarly). By replacing PQ′k with SjT ′k and P1V1k by S ′jTk as in
Figure 8 (in other words, by exchanging T and T ′) we obtain a new interesting
walk. We now prove that it is not of the form (22), in contradiction with
Lemma 4.18.

Indeed, we have SjT ′k = P̃ Q̃ where P̃ consists only of nodes not in
Z0, and Q̃ consists only of nodes in Z0. Similarly, S ′jTk = P̃1Q̃1 where
P̃1 consists only of nodes not in Z0, and Q̃1 consists only of nodes in Z0.
However, the set of nodes of Tk is a complement of the set of nodes of Sj
(recall that PQ′k = SjTk and all nodes occur in PQ exactly once) and that
of T ′k is not (since T and T ′ have different node sets), and this implies that
P̃ or Q̃ miss some nodes in contradiction with Lemma 4.18. Hence P1 = P
and V1 = Q′.

Generalizing the cycle C1, define Cα = kWαk for all 1 ≤ α ≤ g− 1. Since
we can exchange any two Cα without changing neither the length, nor the
weight of the walk, the decomposition of C1 is also true for any Cα, that is
Cα = kPQ′k for all α.

Now, each critical node occurs in the walk PQ′kW1kW2 . . . kWg−1k =
(PQ)g exactly g times, hence, by Lemma 4.16 part (ii), U contains all non-
critical nodes exactly once, and only them. So we have obtained that W0 =
(PQ)gU where U contains all non-critical nodes exactly once, and only them.

It remains to show that U = P . In D(AT ) (the graph of the transpose
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of A) there is also an interesting walk. Since (AT )m = (Am)T for all m ≥ 1,
Walk W T

0 , that starts with the end of W0 and goes to the beginning of W0

via exactly the same nodes listed in the opposite order is an interesting walk
on D(AT ). On one hand, by construction W T

0 = UT (QTP T )g, where UT , QT

and P T contain the same nodes as U , Q and P listed in the opposite order.
On the other hand, applying the argument above we get a decomposition of
the form W T

0 = (P Q)gU , and, since g ≥ 2, we conclude that UT = P T = P .
This implies U = P , so the decomposition (23) is established.

In order to obtain (21) we renumber the nodes of D(A) in such a way
that QP = 1 . . . n.

Corollary 4.19. If T1(A) = DM(g, n) then n and g are coprime (Condi-
tion 1).

Proof. If n and g are not coprime, then d = gcd(n, g) > 1. We have g =
pd and n = qd for some p and q. Let W0 be given by (21) and W1 be
(g+1) . . . n(1 . . . n)g−p. Since pn = gq, we have l(W1) and l(W0) are congruent
modulo g, and since p(W1) ≥ p(W0), we obtain that W0 is not twice optimal,
so T1(A,B) < DM(g, n) by Proposition 4.11, a contradiction.

4.6. Proof of Necessity

In this subsection, we finish the proof of necessity of Conditions 1.–6. and
the last statement of the theorem. We assume T1(A) = DM(g, n).

Condition 1 was proved as Corollary 4.19. By Proposition 4.2, Gc(A) is
strongly connected and contains only one cycle with length g denoted by Z0.
(Condition 2).

We now turn to the proof of Conditions 3, 4, and 5, which will be proved
together. The core of the proof is split into Lemmas 4.20, 4.21 and 4.22
below.

By Proposition 4.11 there is a unique twice optimal walk W0 of length
DM(g, n) + g− 1. After renumbering the nodes we can assume that (i, i+ 1)
for 1 ≤ i ≤ (n − 1) and (n, 1) are the arcs of a Hamiltonian cycle of D(A),
and that nodes {1, . . . , g}, are the nodes of Z0.

Notice that we have not yet proved Z0 = 1 . . . g1 (condition 3) since we
do not know the arcs of Z0.

Any occurrence of a node in W0 can be encoded by its position in that
walk. We now define what we mean by position. We assume that the first
occurrence of node n has position 0, and the position of any node i in the kth
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copy of 1 . . . n (called period) is i+ (k− 1)n, and the position of the ith node
in the part of the walk before the first occurrence of 1 (for i ∈ {g+1, . . . , n})
is i− n. Note that these positions (and only these) are non-positive.

We will be interested in the set of subwalks of W0 from i to j, with length
1 modulo g. Denote this set by W1,g(i → j)[W0]. This set is nonempty if
and only if there is an occurrence of node i at some position denoted by N b

i

and there is an occurrence of node j at some position denoted by N e
j such

that N e
j > N b

i and N e
j −N b

i ≡g 1.
Consider the following properties of subwalks of W0:
Property A: We say that a subwalk W ∈ W1,g(i → j)[W0] has this

property if it goes through one of the first g nodes (i.e. a node of Z0).
Property B: We say that a subwalk W ∈ W1,g(i → j)[W0] has this

property if after replacing W in W0 by the arc (i, j) where i and j are the
beginning node and the end node of W respectively, the resulting walk W ′

0

goes through one of the first g nodes.
A subwalk W ∈ W1,g(i → j)[W0] does not have Property B if and only

if it begins at a non-positive position, ends in the last period of W0 and has
i, j > g.

Define A1, B1 and A2 by (10), (11) and (12).

Lemma 4.20. If W ∈ W1,g(i → j)[W0] has Property A then p(W ) ≤
(CSR)i,j[A].

Proof. Property A means that W belongs to W1,g(i
Z0−→ j) on D(A), since

the first g nodes are the node set of Z0. As (CSR)i,j[A] is the largest weight

of walks in W1,g(i
Z0−→ j) on D(A) (recall λ(A) = 1 and Proposition 2.16

part (i)), the claim follows.

Lemma 4.21. If W ∈ W1,g(i → j)[W0] has Property B and j 6= i + 1 and
(i, j) 6= (n, 1) then ai,j < p(W ).

Proof. If ai,j ≥ p(W ) then replacing W by (i, j) in W0 we get a walk with
the same length modulo g as W0, whose weight is not less than p(W0) and
whose length is strictly less than `(W0). This contradicts the fact that W0 is
twice optimal.

Lemma 4.22. 1. If j 6≡g (i + 1) then ai,j < (CSR)i,j[A1] and ai,j <
(CSR)i,j[A1 ⊕B1];
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Case 1

1 i 1 j

∈ W ′
0 N b

i ∈ W N e
j

W

Case 2.1

1 i j 1

N b
i

∈ W ′
0 ∩W

N e
j

W

Case 2.2

i 1 1 j n

N b
i

∈ W ′
0 ∩W
N e
j

W

Figure 9: Cases 1, 2.1, and 2.2

2. If j ≡g (i + 1) and i or j belong to {1, . . . , g} but j 6= i + 1 and
(i, j) 6= (g, 1), then ai,j < (CSR)i,j[A1] and ai,j < (CSR)i,j[A1 ⊕B1];

3. The arcs (i, i+ 1) for 1 ≤ i ≤ g − 1 and (g, 1) are critical.

Proof. We will examine the existence of walks with Properties A and B in
the cases of our interest, and apply Lemmas 4.20 and 4.21 .

1: Examine the case j 6≡g (i+ 1) . We take the occurrence of i in the first
period, that is, N b

i = i. Then, since j 6≡g (i + 1), the (unique) occurrence
of j for which N e

j − i ≡g 1 and N e
j > i exists in some other period. They

have both Property A and Property B, and Lemmas 4.20 and 4.21 imply
that ai,j < (CSR)i,j[A]. See Figure 9 for this case as well as cases 2.1 and
2.2 described below.

2: We need to examine the following two cases: 2.1 j ≡g (i + 1), j > i
and i ≤ g and 2.2 j ≡g (i+ 1), j < i, i > g, j ≤ g.

Case 2.1. We can take the occurrences of i and j in any period k at
positions N b

i = i+ (k − 1)n and N e
j = j + (k − 1)n.
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Case 2.2. Take the occurrence of i with N b
i = i − n and the occurrence

of j with N e
j = j + (g − 1)n (in the last period).

In both cases, the walks defined by these occurrences have both Prop-
erty A and Property B. By Lemmas 4.20 and 4.21, we have ai,j < (CSR)i,j[A]
if j 6= i + 1. Note that here and in 1. above we still have to argue that A
can be replaced with A1 and A1 ⊕B1.

3: If an arc (i, j) is critical then ai,j = (CSR)i,j[A]. Hence if ai,j <
(CSR)i,j[A] then (i, j) is non-critical. As {1, . . . , g} are nodes of a critical
cycle of length g and parts 1. and 2. above imply that (i, i + 1) for 1 ≤ i ≤
g − 1 and (g, 1) are the only arcs between the first g nodes that can have
ai,j = (CSR)i,j[A], so these arcs are critical.

Thus 1 . . . g1 is a critical cycle of A and λ(A1) = λ(A1 ⊕ B1) = 1, and
therefore A can be replaced with A1 and A1⊕B1 first in statement and proof
of Lemma 4.20 and therefore also in the proofs of 1. and 2. above.

Condition 3 of the theorem follows now from Lemma 4.22 3., Condition 4
follows from Lemma 4.22 2., and Condition 5 is implied by the following
Lemma.

Lemma 4.23. If j ≡g (i+ 1) and j > i > g then ai,j < (A1)
j−i
i,j .

Proof. We can take the occurrences of i and j at positions i−n and j−n. The
resulting walk has Property B. Hence by Lemma 4.21 we have ai,j < p(W )
for j 6= i + 1. As W is also a unique (and hence optimal) walk on D(A1)
from i to j and having length j − i we obtain that p(W ) = (A1)

j−i
i,j .

It remains to obtain Condition 6. Since T1(A) = DM(g, n), we have
(ADM(g,n)−1)g+1,n < (CSDM(g,n)−1R)g+1,n[A],

and hence (B
DM(g,n)−1
1 )g+1,n < (CSDM(g,n)−1R)g+1,n[A].

Let us argue that CStR[A] = CStR[A1] for all t. Indeed, the equality
CStR[A] = CStR[A1 ⊕ B1] follows from Lemma 3.11 since A2 < CSR[A1 ⊕
B1] by Lemma 4.22, and the equality CStR[A1 ⊕ B1] = CStR[A1], fol-
lows from Lemma 4.1. We also have CSDM(g,n)−1R[A1] = CSn−1R[A1] since
λ(A1) = 1 and DM(g, n) ≡g n.

The remaining uniqueness statements have been proved in Remark 4.13.

5. Matrices Attaining the Wielandt Bound

This section is devoted to the proof of Theorem 3.7.
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If Wi(n) > DM(g, n), then the Wielandt bound cannot be attained.
Hence we are only interested in the case when Wi(n) ≤ DM(g, n). Observe
that Wi(n) = DM(n− 1, n), and therefore

DM(g, n) ≥Wi(n)⇔ DM(g, n) ≥ DM(n− 1, n)⇔ g ≥ n− 1

for any n ≥ 2.
Thus we have two cases: g = n− 1 and g = n.
In case g = n− 1, we have DM(n− 1, n) = Wi(n), and observe that Con-

ditions 1, 5 and 6 of Theorem 3.1 trivially hold, in view of Remark 3.3. Next,
both sufficiency and necessity as well as the last part of the statement, for
g = n−1, follow as a special case of the corresponding claims in Theorem 3.1.

In case g = n, let us prove the sufficiency and necessity of Condition 2.
Sufficiency: By Lemma 3.11, Condition 2 implies that T1(A) = T1(A1),

so it suffices to show that T1(A1) = Wi(n). For this, note that for Ã1 with
entries defined by

(Ã1)i,j =

{
1, if (A1)i,j 6= 0,

0, otherwise.
(25)

(Wielandt’s example, see e.g. [5]) we have T (Ã1) = Wi(n), meaning that

there exist i, j such that (Ã1)
Wi(n)−1
i,j = 0. This implies that also (A1)

Wi(n)−1
i,j = 0

and hence T1(A1) ≥Wi(n) (recalling that T1(A1) = T (A1)). However we also
have T1(A1) ≤Wi(n) and hence T1(A1) = Wi(n).

Necessity: To prove necessity we will need the following result, which
is analogous to Proposition 4.11. Since the conditions are invariant under
scalar multiplication, we will assume λ(A) = 1 in the rest of this section.

Proposition 5.1. Let A ∈ Rn×n
max for n ≥ 1 and g = n. If A has T1(A) =

Wi(n), then there exists a unique twice optimal walk of length Wi(n) +n−1.
It is of the form

W0 = n(1 . . . (n− 1))n−11 . . . n, (26)

where, after appropriate renumbering, (i, i + 1) for 1 ≤ i < n and (n, 1) are
the arcs of the unique critical cycle.

Proof. This is an improvement on the proof of Theorem 2.15 in [14] with
extra care on the extremal cases.
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Let Z0 be a critical cycle, which is of length n. This is the only critical
cycle (up to choice of its first node) as any extra arc would lead to a shorter
cycle.

Let W be a twice optimal walk. Denote its first node by i and its last
node by j. Let iαjα, for α = 1, . . . ,m be the noncritical arcs of W . For
every such arc of W , insert a copy of Z0 as a walk beginning and ending at
jα. Denote the resulting walk by W ′. Observe that for each noncritical arc
iαjα we can detect the node iα occurring in the subsequent copy of Z0. This
gives rise to a cycle Cα consisting of a shortcut iαjα and a number of critical
arcs. Thus we obtain the following decomposition in term of the multiset of
its arcs:

M(W ′) = M(P ) ∪
m⋃
α=1

M(Cα) ∪
k⋃

β=1

M(Zβ) ,

where M(V ) denotes the multiset of arcs of a walk V , m is the number of
noncritical arcs in the original walk, the Zβ are critical cycles, and P is a
critical path from i to j. Since Z0 is the only critical cycle, we have Zβ = Z0

for all β. We can remove k − 1 copies of Z0 and get an optimal walk in
W1,n(i→ j) of smaller length. Denote the resulting walk by W ′′.

Further, since W ′′ has the largest weight in W1,n(i → j), one cannot
remove cycles from it maintaining the length modulo n, and hence m ≤ n−1
by Lemma 4.14. We distinguish two cases:

1) M(P ) ∪
⋃m
α=1M(Cα) is connected, in which case also the kth copy of

Z0 can be removed. The length of the resulting walk is bounded by (n−1)+
(n− 1)2 < (n− 1)2 + n. Thus, T1(A) < Wi(n), a contradiction, which shows
that this case is impossible.

2) M(P ) ∪
⋃m
α=1M(Cα) is disconnected. Then we cannot remove Z0

from W ′′. However, in this case there is a cycle Ĉ such that l(Ĉ) + l(P ) ≤
n−1. Therefore the length of W ′′ is bounded by n+(n−1)+(n−2)(n−1) =
(n− 1)2 + n.

Further, in case 2, the length of all cycles Cα is bounded by n− 2, unless
one of the connected components of M(P ) ∪

⋃m
α=1M(Cα) has size 1. In the

former case the length is bounded by n+ (n− 1) + (n− 2)2 < (n− 1)2 + n,
which is again impossible. It thus remains to treat two subcases:
2a) There is a loop (or possibly, several copies of the same loop) disconnected
from P , and the rest of the cycles of M(P ) ∪

⋃m
α=1M(Cα) connected to P ;

2b) l(P ) = 0 and there are n− 1 cycles of length at most n− 1 disconnected
from P .
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In subcase 2a, the length of all cycles is bounded by n−2, since any cycle
of length n− 1 could be combined with the loop and removed. In this case,
the length of the walk is again bounded by n+(n−1)+(n−2)2 < (n−1)2+n,
which is impossible.

In subcase 2b, we have i = j. Length l(W ′′) can reach the length (n −
1)2+n only if all cycles Cα, not containing i = j, are of length n−1. However,
by construction, every such cycle should contain just one noncritical arc, and
this has to be a 1-shortcut bypassing i = j. However, there is only one 1-
shortcut bypassing i = j which implies that all these cycles are identical and
W ′′ has to be of the form (26), after renumbering the nodes in such a way
that Z0 = 1 . . . n1 and i = n.

As in the proof of Theorem 3.1, any occurrence of a node in W0 of Propo-
sition 5.1 can be encoded by its position in that walk. Node n occurs there
only twice. Its first occurrence has position 0, and its second occurrence has
position (n − 1)2 + n. The kth occurrence of node i, for 1 ≤ i ≤ n − 1 and
k = 1, . . . , n has position i+ (k − 1)(n− 1).

A subwalk of length 1 modulo n from an occurrence of node i at position
N b
i to an occurrence of node j at position N e

j exists if and only if N b
i < N e

j

and N e
j −N b

i ≡n 1.
We will need the following observation:

Lemma 5.2. If there are occurrences N b
i of node i and N e

j of node j such
that the subwalk from N b

i to N e
j has length 1 modulo n and N e

j − N b
i > 1,

then ai,j < (CSR[A1])i,j.

Proof. Denote by W the subwalk from N b
i to N e

j . This subwalk uses only
the arcs of the digraph D(A1), where it is optimal among the walks with the
same length modulo n, and goes through critical nodes (since all nodes are
critical). Hence p(W ) = (CSR[A1])i,j. If W is replaced with (i, j) then the
resulting walk also goes through the critical nodes, and therefore we must
have ai,j < p(W ), for otherwise W0 is not twice optimal. Hence the claim.

Using Lemma 5.2, for the necessity of Condition 2, it suffices to prove
that the subwalks with length 1 modulo n but larger than 1 exist for any
(i, j) except possibly for (i, j) = (n − 1, 1), (i, j) = (n, 1), or j = i + 1 and
i ∈ {1, . . . , n− 1}, which are the arcs of D(A1).

Case 1. i = j = n. We have two occurrences of n with N b
n = 0 and

N e
n = (n− 1)2 + n. As (n− 1)2 + n ≡n 1, the walk with required properties

exists.
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Case 2. i = n and j 6= n. In this case N b
n = 0 and we can choose

N e
j = j + (k − 1)(n− 1) with N e

j ≡n 1, since k ∈ {1, . . . n} and n− 1 and n
are coprime.

Case 3. i 6= n and j = n. This case is symmetrical to case 2.
Case 4. i 6= n, j 6= n, (i, j) 6= (n − 1, 1), and j 6= i + 1. Observe that

j 6= i+ 1 is equivalent to j 6≡n (i+ 1) because 1 ≤ i ≤ j ≤ n.
Take N i

b = i and N j
e = j + (k − 1)(n − 1) where k ∈ {1, . . . , n}. Then

N j
e −N i

b = (j − i) + (k − 1)(n− 1). As n and n− 1 are coprime, there is a
k ∈ {1, . . . , n} such that (j− i)+(k−1)(n−1) ≡n 1, and since j 6≡n i+1 we
have k > 1 and hence N j

e −N i
b > 1. The case N j

e −N i
b = 1 is only possible

if i = (n− 1) and j = 1, the case which was excluded.

The uniqueness of the renumbering follows from the uniqueness of W0.

6. Matrices with Critical Columns Attaining the Bounds

This section is devoted to the proof of Theorems 3.6 and 3.10. As before,
we assume that λ(A) = 1.

Let us first notice that the transient of critical rows and columns is at
most T1(A) because if i or j is critical then (CStR ⊕ Bt

N)i,j = (CStR)i,j.
Thus, if the transient of a critical row or column reaches the bound, so
does T1(A) and A belongs to the class defined by Theorem 3.1 (except if
g(Gc(A)) = 1) or 3.7.

Proof of Theorem 3.6. Let A be a matrix with g(Gc(A)) = g and a criti-
cal row i0 whose transient is DM(g, n) and show that the index of Gc(A)
is DM(g, n). Then, the same is true for a critical column by transposition
of the matrix and the converse of the theorem follows from [15][Lemma 8.2].
We also have T1(A) = DM(g, n), by the above argument.

We assume without loss of generality that A is strictly visualized.
By Proposition 4.2, Gc(A) is strongly connected and contains a unique

(up to choice of the starting node) cycle of length g denoted by Z0.
Since i0 is critical, the transient of row i0 reaches the bound means that

there is a j0 such that A
DM(g,n)−1
i0j0

< (CSn−1R)i0j0 and by Proposition 4.9,
there is an interesting walk W0 from i0 to j0.

If g ≥ 2, then A satisfies the conditions of Theorem 3.1. We assume
without loss of generality that A has been reordered as in the theorem.

By Proposition 4.11, we have (i0, j0) = (g+ 1, n), so that g+ 1 is critical.
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It remains to understand Gc(A). By Lemma 3.11, it is contained in Gc(A1⊕
B1). Since A is visualized, Condition 5 ensures that it only contains entries
of A1 and entries ij with g < j < i, so that the only possible critical cy-
cle that would share a node with Z0 = 1 · · · g1 is Z1 = 1 · · ·n1. Finally,
since Gc(A) is strongly connected and contains g + 1 and Z0, Z1 is critical
and we have D(A1) ⊂ Gc(A). Since g and n are coprime, γ(Gc(A)) = 1.

If g = 1, since i0 and Z0 are critical, and Gc(A) is strongly connected,
there is a walk from i0 to any node of Z0 with only critical arcs. Since A is
strictly visualized, this walk has weight 0 and by optimality of W0, W0 also
uses only critical arcs from i0 to Z0. But, by Lemma 4.16, W0 goes through
every node not in Z0 before reaching Z0, so that all nodes are critical.

In both cases, Gc(A) is strongly connected, has cyclicity 1 and contains all
nodes. Thus, the strict visualization ensures that (CStR)i,j = 1 for all i, j,
and that Ai,j = 1 if and only if (i, j) is a critical arc. Therefore, we can
redefine A1 and A2 by (A1)i,j = Ai,j = 1 and (A2)i,j = 0 if (i, j) is critical
and (A2)i,j = Ai,j < 1 and (A1)i,j = 0 otherwise. We have A = A1 ⊕ A2,
λ(A1) = 1 and A2 < CSR[A1], so that Lemma 3.11 ensures that the index
of Gc(A) is T (A1) = T1(A1) = T1(A) = DM(g, n).

Proof of Theorem 3.10. Let us first check that the conditions are sufficient :
T1(A) = T1(A1) by Lemma 3.11 and T1(A1) is at least the index of D(A1) and
thus T1(A) = Wi(n). But, since all nodes are critical (because of the Hamil-
tonian critical cycle), this means that there is a (critical) row (or column)
whose transient is Wi(n).

Conversely, let us assume there is a critical row (or column) whose tran-
sient is Wi(n). Since T1(A) = Wi(n) the existence of A1 and A2 with
A2 < CSR[A1] follows from Theorem 3.7 and we already noticed that D(A1)
has index Wi(n). It remains to show the existence of the Hamiltonian cycle.
By Lemma 3.11, we know that Gc(A) = Gc(A1), so that g = g(Gc(A)) ∈
{n− 1, n}.

If g = n − 1, then DM(g, n) = Wi(n) and we are in the situation of
Theorem 3.6. Thus, Gc(A1) = Gc(A) has index Wi(n), which is only possible
if Gc(A) = D(A1), that is if A1 has a critical Hamiltonian cycle.

If g = n, then there is an Hamiltonian cycle in Gc(A), which is necessarily
a critical Hamiltonian cycle of D(A1) because Gc(A1) = Gc(A).
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