172 research outputs found

    Improved temperature measurement and modeling for 3D USCT II

    Get PDF
    Medical visualization plays a key role in the early diagnosis and detection of symptoms related to breast cancer. However, currently doctors must struggle to extract accurate and relevant information from the 2D models on which the medical field still relies. The problem is that 2D models lack the spatial definition necessary to extract all of the information a doctor might want. In order to address this gap, we are developing a machine capable of performing ultrasound computer tomography and reconstructing 3D images of the breasts - the KIT 3D USCT II. In order to accurately reconstruct the 3D image using ultrasound, we must first have an accurate temperature model. This is because the speed of sound varies significantly based on the temperature of the medium (in our case, water). We address this issue in three steps: so-called super-sampling, calibration, and modeling. Using these three steps, we were able to improve the accuracy of the hardware from ±1°C to just under 0.1°C

    FID NMR Studies of Suspensions and Porous Media

    Get PDF
    Nuclear Magnetic Resonance is used for the determination of the properties of porous media in Geophysics and oil exploration. As it stands, there is a challenge in understanding the connection between the times measured in Free Induction Decay Nuclear Magnetic Resonance experiments and the shape of samples. In this work, suspensions and watersaturated densely-packed porous media with the volume fraction of the glass solid phase in the range from 10–4 to ∌1 are found to exhibit FID decay rates proportional to the square root of the volume fraction of the solid phase of the samples. A model of spheres in liquid is proposed for the description of such behavior

    3D Ultrasound Computer Tomography for Breast Cancer Diagnosis at KIT: an Overview

    Get PDF
    3D Ultrasound Computer Tomography (USCT) emitting and receiving spherical wave fronts overcomes the limitations of 2D systems by offering a nearly isotropic 3D point spread function, a large depth of field, less loss of out-of-plane reflections, and fast 3D data acquisition. 3D devices for clinical practice require a more complex hard- and software due to the huge data rate, time-consuming image reconstruction, and large number of small transducers. The here reviewed KIT 3D USCT is a prototype for clinical studies, which realizes for the first time the full benefits of a 3D system

    On the Number of Incipient Spanning Clusters

    Full text link
    In critical percolation models, in a large cube there will typically be more than one cluster of comparable diameter. In 2D, the probability of k>>1k>>1 spanning clusters is of the order e−αk2e^{-\alpha k^{2}}. In dimensions d>6, when η=0\eta = 0 the spanning clusters proliferate: for L→∞L\to \infty the spanning probability tends to one, and there typically are ≈Ld−6 \approx L^{d-6} spanning clusters of size comparable to |\C_{max}| \approx L^4. The rigorous results confirm a generally accepted picture for d>6, but also correct some misconceptions concerning the uniqueness of the dominant cluster. We distinguish between two related concepts: the Incipient Infinite Cluster, which is unique partly due to its construction, and the Incipient Spanning Clusters, which are not. The scaling limits of the ISC show interesting differences between low (d=2) and high dimensions. In the latter case (d>6 ?) we find indication that the double limit: infinite volume and zero lattice spacing, when properly defined would exhibit both percolation at the critical state and infinitely many infinite clusters.Comment: Latex(2e), 42 p, 5 figures; to appear in Nucl. Phys. B [FS

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Noise Sensitivity in Continuum Percolation

    Full text link
    We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first for which the critical probability p_c \ne 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product measures. A quantitative version of this result was recently proved by Keller and Kindler. We give a simple deduction of the non-quantitative result from the unbiased version. We also develop a quite general method of approximating Continuum Percolation models by discrete models with p_c bounded away from zero; this method is based on an extremal result on non-uniform hypergraphs.Comment: 42 page
    • 

    corecore