1,021 research outputs found

    About uncertainties in practical salinity calculations

    Get PDF
    In the current state of the art, salinity is a quantity computed from conductivity ratio measurements, with temperature and pressure known at the time of the measurement, and using the Practical Salinity Scale algorithm of 1978 (PSS-78). This calculation gives practical salinity values <I>S</I>. The uncertainty expected in PSS-78 values is ±0.002, but no details have ever been given on the method used to work out this uncertainty, and the error sources to include in this calculation. Following a guide published by the Bureau International des Poids et Mesures (BIPM), using two independent methods, this paper assesses the uncertainties of salinity values obtained from a laboratory salinometer and Conductivity-Temperature-Depth (CTD) measurements after laboratory calibration of a conductivity cell. The results show that the part due to the PSS-78 relations fits is sometimes as significant as the instrument's. This is particularly the case with CTD measurements where correlations between variables contribute mainly to decreasing the uncertainty of <I>S</I>, even when expanded uncertainties of conductivity cell calibrations are for the most part in the order of 0.002 mS cm<sup>−1</sup>. The relations given here, and obtained with the normalized GUM method, allow a real analysis of the uncertainties' sources and they can be used in a more general way, with instruments having different specifications

    Palaeoenvironmental research at Hawelti–Melazo (Tigray, northern Ethiopia) – insights from sedimentological and geomorphological analyses

    Get PDF
    The sites of Hawelti–Melazo in the Tigray region of the northern Ethiopian Highlands is an archaeological hotspot related to the D'mt kingdom (ca. 800–400 BCE). The existence of several monumental buildings, which have been excavated since the 1950s, underline the importance of this area in the Ethio-Sabaean period. We investigated the geomorphological and geological characteristics of the site and its surroundings and carried out sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray. Luminescence dating of feldspar grains from the May Agazin catchment indicate enhanced fluvial activity in the late Pleistocene, likely connected to the re-occurring monsoon after the Last Glacial Maximum (LGM). The abundance of trap basalt on the Melazo plateau, which provides the basis for the development of fertile soils, and the presumably higher groundwater level during the Ethio-Sabaean Period, provided favourable settlement conditions. The peninsula-like shape of the Melazo plateau was easily accessible only from the east and northeast, while relatively steep scarps enclose the other edges of the plateau. This adds a possible natural protective function to this site

    Uncertainty of the atmospheric neutrino fluxes

    Get PDF
    The uncertainty in the calculation of atmospheric neutrino fluxes is studied. The absolute value of atmospheric neutrino fluxes is sensitive to variation of the primary cosmic ray flux model and/or the interaction model. However, the ratios between different kind of neutrinos stay almost unchanged with these variations. It is unlikely that the anomalous ratio (ΜΌ/Μe)obs/(ΜΌ/Μe)MC(\nu_{\mu}/\nu_e)_{obs}/(\nu_{\mu}/\nu_e)_{MC} reported by Kamiokande and Super Kamiokande is caused by the uncertainty of predicted atmospheric neutrino fluxes.Comment: 7 pages, LaTeX, 9 figures, talk given at Neutrino98, Takayama, Japan, 4-9 June, 199

    Light controls motility and phase separation of photosynthetic microbes

    No full text
    Large ensembles of interacting, out-of-equilibrium agents are a paradigm of active matter. Their constituents' intrinsic activity may entail the spontaneous separation into localized phases of high and low densities. Motile microbes, equipped with ATP-fueled engines, are prime examples of such phase-separating active matter, which is fundamental in myriad biological processes. The fact that spontaneous spatial aggregation is not widely recognized as a general feature of microbial communities challenges the generalisation of phase separation beyond artificial active systems. Here, we report on the phase separation of populations of Chlamydomonas reinhardtii that can be controlled by light in a fully reversible manner. We trace this phenomenon back to the light- and density-dependent motility, thus bridging the gap from light perception on the single-cell level to collective spatial self-organization into regions of high and low density. Its spectral sensitivity suggests that microbial motility and phase separation are regulated by the activity of the photosynthetic machinery. Characteristic fingerprints of the stability and dynamics of this active system paint a picture that cannot be reconciled with the current physical understanding of phase separation in artificial active matter, whereby collective behavior can emerge from inherent motility modulation in response to changing stimuli. Our results therefore point towards the existence of a broader class of self-organization phenomena in living systems

    An analytical model for granular jamming beams with applications in morphing aerostructures

    Get PDF

    The PAMELA Time-of-Flight system: status report

    Get PDF
    Abstract The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment, scheduled to be launched in 2003, aboard a Soyuz TM2 rocket, is designed to provide a better understanding of the antimatter component of cosmic rays. In the following we report on the features and performances of its scintillator telescope system which will provide the primary experimental trigger and time-of-flight particle identification

    A measurement of cosmic ray deuterium from 0.5–2.9 GeV/nucleon

    Get PDF
    The rare isotopes ^(2)H and ^(3)He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The unique propagation history of these rare isotopes provides important constraints on galactic cosmic ray source spectra and on models for their propagation within the Galaxy. Hydrogen and helium isotopes were measured with the balloon-borne experiment, IMAX, which flew from Lynn Lake, Manitoba in 1992. The energy spectrum of deuterium between 0.5 and 3.2 GeV/nucleon measured by the IMAX experiment as well as previously published results of ^(3)He from the same instrument will be compared with predictions of cosmic ray galactic propagation models. The observed composition of the light isotopes is found to be generally consistent with the predictions of the standard Leaky Box Model derived to fit observations of heavier nucle

    Cosmic antiprotons as a probe for supersymmetric dark matter?

    Get PDF
    The flux of cosmic ray antiprotons from neutralino annihilations in the galactic halo is computed for a large sample of models in the MSSM (the Minimal Supersymmetric extension of the Standard Model). We also revisit the problem of estimating the background of low-energy cosmic ray induced secondary antiprotons, taking into account their subsequent interactions (and energy loss) and the presence of nuclei in the interstellar matter. We consider a two-zone diffusion model, with and without a galactic wind. We find that, given the uncertainties in the background predictions, there is no need for a primary (exotic) component to explain present data. However, allowing for a signal by playing with the uncertainties in the background estimate, we discuss the characteristic features of the supersymmetric models which give a satisfactory description of the data. We point out that in some cases the optimal kinetic energy to search for a signal from supersymmetric dark matter is above several GeV, rather than the traditional sub-GeV region. The large astrophysical uncertainties involved do not, one the other hand, allow the exclusion of any of the MSSM models we consider, on the basis of data. We present besides numerical results also convenient parameterizations of the antiproton yields of all `basic' two-body final states. We also give examples of the yield and differential energy spectrum for a set of supersymmetric models with high rates. We also remark that it is difficult to put a limit on the antiproton lifetime from present measurements, since the injection of antiprotons from neutralino annihilation can compensate the loss from decay.Comment: 22 pages, 11 figures, uses emulateapj.st

    The ToF and Trigger electronics of the PAMELA experiment

    Get PDF
    The PAMELA satellite-borne experiment, scheduled to be launched in 2004, is designed to provide a better understanding of the antimatter component of the cosmic rays. Its ToF scintillator system will provide the primary experimental trigger and time-of-flight particle identification. The time resolution requested is σ, < 120 ps. To fulfill the detector requirements the digitization electronics should have a time resolution ≀ 50 ps and provide a wide dynamic range for charge measurements. The peculiarity of the developed electronics arises from the need to obtain such a time resolution operating in a satellite environment, which implies low-power consumption, radiation hardness, redundancy and high reliability
    • 

    corecore