38 research outputs found

    Summer Learning Loss among Elementary School Children with Reading Disabilities

    Get PDF
    This study investigated whether students with reading disabilities (RD) showed greater regression in reading skills than did non-RD students over the summer vacation. The RD group consisted of 30 students in grades 4 to 6 from a private school for students with learning disabilities and a comparison group of 30 average readers in grades 4 to 6 attending a public school. All students were tested in May/June and September on measures of reading achievement, phonological processing, and oral receptive vocabulary. Significant regression in the RD group’s scores was found on speed of sight word reading, speeded phonological decoding, and untimed sight word reading. These results suggested that students with RD tend to decline in areas that require automatic reading skills. Implications for students with RD in relation to periods of extended absence from formal literacy instruction are discussed

    Reading Deficits in Pregnant Teens: Implications for Policy and Practice

    Get PDF
    The present study examined the relationship between teen pregnancy and reading achievement. Girls ages 14 to 17 who were pregnant at the time of testing (n=3) and girls who had never been pregnant (n=19) were compared on measures of reading achievement. Specifically, the WRAT-4 was used to measure lower-order single word reading and spelling skills, and the TOWRE and the NDRT were used to measure higher-order reading fluency and comprehension. A MANOVA was conducted to investigate whether there was a difference between pregnant and never-pregnant teens in one or more domains of reading achievement. Results did not indicate statistically significant differences between groups. Follow-up ANOVAs were conducted to compare pregnant and never-pregnant teens on measures of higher-order reading skills. No differences between groups were noted in any analysis. Due to small sample size, the power of the analyses was limited. Future research should be conducted with a larger sample

    Using Curriculum-Based Measurement in the Assessment of Reading Disabilities

    Get PDF
    The present investigation looked at students’ reading achievement within the context of the Peer Assisted Learning Strategies (PALS) intervention. It consisted of three separate studies, all of which are related to reading achievement and intervention during the early years of school. The purpose of Study One was to determine whether students who are identified with reading disabilities via psychological assessment report make improvements over the school year subsequent to the implementation of this report. It was hypothesized that when teachers have access to psychological assessment reports, they will better understand their students’ individual learning needs and that this will translate to improved scores in reading. This hypothesis was not supported; those students who underwent psychological assessment did not show significant improvement in their reading skills as compared to students who did not undergo psychological assessment. Study Two examined whether the reading skills of students who are considered low achievers in reading tend to regress to a greater extent during the traditional summer vacation, as compared to their high- and typically-peers, whether it takes the low achievers longer to recover from summer loss, and whether they show more shallow learning trajectories over the school year. The summer learning loss hypothesis was partially supported. In terms of summer learning loss, on a measure of word reading administered following the summer after Senior Kindergarten, the low achievers’ scores remained stable over the summer, while the average and high achievers’ scores increased. It is thought that the Grade 1 year marks an important time for the onset of summer learning loss as a phenomenon. Study Three assessed the role of language prosody as a predictor of reading outcomes within the PALS intervention. Language prosody was not found to be a significant predictor of progress in PALS. The utility of curriculum-based measurements in the assessment of reading disabilities in a Canadian context is discussed

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic® a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva® th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¹ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L

    Etude rétrospective de la relation alimentaire mÚre-enfant (limites et perspectives)

    No full text
    TOULOUSE2-BUC Mirail (315552102) / SudocTOULOUSE2-UFR Psychologie (315552220) / SudocSudocFranceF

    Plasmodium vivax multidrug resistance-1 gene polymorphism in French Guiana

    No full text
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.International audienceBACKGROUND:Plasmodium vivax malaria is a major public health problem in French Guiana. Some cases of resistance to chloroquine, the first-line treatment used against P. vivax malaria, have been described in the Brazilian Amazon region. The aim of this study is to investigate a possible dispersion of chloroquine-resistant P. vivax isolates in French Guiana. The genotype, polymorphism and copy number variation, of the P. vivax multidrug resistance gene-1 (pvmdr1) have been previously associated with modification of the susceptibility to chloroquine.METHODS:The pvmdr1 gene polymorphism was evaluated by sequencing and copy number variation was assessed by real-time PCR, in P. vivax isolates obtained from 591 symptomatic patients from 1997 to 2013.RESULTS:The results reveal that 1.0% [95% CI 0.4-2.2] of French Guiana isolates carry the mutations Y976F and F1076L, and that the proportion of isolates with multiple copies of pvmdr1 has significantly decreased over time, from 71.3% (OR = 6.2 [95% CI 62.9-78.7], p < 0.0001) in 1997-2004 to 12.8% (OR = 0.03 [95% CI 9.4-16.9], p < 0.0001) in 2009-2013. A statistically significant relationship was found between Guf-A (harboring the single mutation T958M) and Sal-1 (wild type) alleles and pvmdr1 copy number.CONCLUSIONS:Few P. vivax isolates harboring chloroquine-resistant mutations in the pvmdr1 gene are circulating in French Guiana. However, the decrease in the prevalence of isolates carrying multiple copies of pvmdr1 might indicate that the P. vivax population in French Guiana is evolving towards a decreased susceptibility to chloroquine
    corecore