690 research outputs found

    Evidence for grain growth in T Tauri disks

    Get PDF
    In this article we present the results from mid-infrared spectroscopy of a sample of 14 T Tauri stars with silicate emission. The qualitative analysis of the spectra reveals a correlation between the strength of the silicate feature and its shape similar to the one which was found recently for the more massive Herbig Ae/Be stars by van Boekel et al. (2003). The comparison with theoretical spectra of amorphous olivine with different grain sizes suggests that this correlation is indicating grain growth in the disks of T Tauri stars. Similar mechanisms of grain processing appear to be effective in both groups of young stars.Comment: 4 pages A&A lette

    Models of G time variations in diverse dimensions

    Full text link
    A review of different cosmological models in diverse dimensions leading to a relatively small time variation of the effective gravitational constant G is presented. Among them: 4-dimensional general scalar-tensor model, multidimensional vacuum model with two curved Einstein spaces, multidimensional model with multicomponent anisotropic "perfect fluid", S-brane model with scalar fields and two form field etc. It is shown that there exist different possible ways of explanation of relatively small time variation of the effective gravitational constant G compatible with present cosmological data (e.g. acceleration): 4-dimensional scalar-tensor theories or multidimensional cosmological models with different matter sources. The experimental bounds on G-dot may be satisfied ether in some restricted interval or for all allowed values of the synchronous time variable.Comment: 27 pages, Late

    Spin-fluctuation theory beyond Gaussian approximation

    Full text link
    A characteristic feature of the Gaussian approximation in the functional-integral approach to the spin-fluctuation theory is the jump phase transition to the paramagnetic state. We eliminate the jump and obtain a continuous second-order phase transition by taking into account high-order terms in the expansion of the free energy in powers of the fluctuating exchange field. The third-order term of the free energy renormalizes the mean field, and fourth-order term, responsible for the interaction of the fluctuations, renormalizes the spin susceptibility. The extended theory is applied to the calculation of magnetic properties of Fe-Ni Invar.Comment: 20 pages, 4 figure

    Damage of Metalworkses under the Complex Varying Loading

    Get PDF
    The phenomenological and computational aspects of the various damage models applications for the low and multi cyclic fatigue processes are investigated. Damage is considered as internal state variable, describing macroscopic effects of the progressive material degradation, within the framework of continuum damage mechanics. Present analysis is restricted to the case of isotropic damage, which can be modeled by a scalar variable. The strain, force and power types of kinetic equations for the damage evolution description are considered. The original mixed strain-power type damage model is developed for taking into account the different physical fracture mechanism in monotone and cyclic loading. The constitutive equations of plastic flow theory coupled and uncoupled to damage has been considered. The rational algorithm of implementation into finite element code is considered for developed damage models. Set of the computational experiments has been carried out for the various structures (huge aerials, pipelines, fastening units, vessel of nuclear reactor) and cases of loading. The comparison of the predictions of the developed model with experimental data is performed for 1X18H10T steel tubular specimens for complex paths of loading and for complex profiles beams under cyclic loading. Damage field distribution is the basic information for the prediction of crack initiation in structures. The developed method of structural parameter for stress concentration zones is discussed for correcting of crack location. It allows to describe the crack initiation near surface domain as observe in numerous experiments

    Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    Get PDF
    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does

    Improved Perturbative QCD Approach to the Bottomonium Spectrum

    Get PDF
    Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably well within the non-relativistic boundstate theory based on perturbative QCD. In that calculation, however, the fine splittings and the S-P level splittings are predicted to be considerably narrower than the corresponding experimental values. We investigate the bottomonium spectrum within a specific framework based on perturbative QCD, which incorporates all the corrections up to O(alpha_S^5 m_b) and O(alpha_S^4 m_b), respectively, in the computations of the fine splittings and the S-P splittings. We find that the agreement with the experimental data for the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as compared to the Coulomb wave functions. The agreement of the S-P splittings with the experimental data also becomes better. We find that natural scales of the fine splittings and the S-P splittings are larger than those of the boundstates themselves. On the other hand, the predictions of the level spacings between consecutive principal quantum numbers depend rather strongly on the scale mu of the operator \propto C_A/(m_b r^2). The agreement of the whole spectrum with the experimental data is much better than the previous predictions when mu \simeq 3-4 GeV for alpha_S(M_Z)=0.1181. There seems to be a phenomenological preference for some suppression mechanism for the above operator.Comment: 26 pages, 16 figures. Minor changes, to be published in PR

    Polynomials, Riemann surfaces, and reconstructing missing-energy events

    Get PDF
    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.Comment: 28 pages, 6 figures; version accepted for publication, with discussion of Higgs to tau tau deca

    Modeling of Territorial and Managerial Aspects of Robotization of Agriculture in Russia

    Full text link
    In the context of a shortage of labor and objective patterns of the development of means of production in a number of sectors of agriculture, farmers are increasingly using robotics. Despite the presence of significant positive economic effects, the robotization of agriculture in Russia is carried out at a slow pace and is very uneven. This suggests that the robotization of agriculture is influenced by the socio-economic characteristics and characteristics of the regions. The methods are based on a systematic approach to research and an algebraic approach to modelling, which, in our opinion, is a system of several components. To build models, data on the introduction of robotics in Russian agriculture for 2006–2020 and the socio-economic characteristics of the regions during the period of the most intensive introduction of robots (2013–2017) were used. As a conclusion, it can be noted that the robotization of agriculture in the Russian Federation is at the implementation stage, which is confirmed by a significant spread in the correlation coefficient of robotization indicators and various socio-economic characteristics of the regions, including the share of organizations using the Internet, availability of road infrastructure, the share of the rural population in the regions and a number of other indicators. It is shown that, at this stage of the robotization of agriculture, the most important are the models of the management process, while the priority is the subjective component of decision-making about the introduction of robotics, both at the micro level and at the regional level. We have proposed models that reflect various aspects of the robotization process and three mathematical models for the implementation of the strategy are built, which form a model-triad. Three theorems on the existence of an optimal realization of the strategy are proved. © 2022 by the authors.Russian Foundation for Basic Research, РФФИ: 20-010-00636The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project No. 20-010-00636 A “Spatial development of robotization of agriculture in Russia: trends, factors, mechanisms”

    Second order QCD corrections to inclusive semileptonic b \to Xc l \bar \nu_l decays with massless and massive lepton

    Full text link
    We extend previous computations of the second order QCD corrections to semileptonic b \to c inclusive transitions, to the case where the charged lepton in the final state is massive. This allows accurate description of b \to c \tau \bar \nu_\tau decays. We review techniques used in the computation of O(\alpha_s^2) corrections to inclusive semileptonic b \to c transitions and present extensive numerical studies of O(\alpha_s^2) QCD corrections to b \to c l \bar \nu_l decays, for l =e, \tau.Comment: 30 pages, 4 figures, 5 table

    Quarkonium spectroscopy and perturbative QCD: massive quark-loop effects

    Get PDF
    We study the spectra of the bottomonium and B_c states within perturbative QCD up to order alpha_s^4. The O(Lambda_QCD) renormalon cancellation between the static potential and the pole mass is performed in the epsilon-expansion scheme. We extend our previous analysis by including the (dominant) effects of non-zero charm-quark mass in loops up to the next-to-leading non-vanishing order epsilon^3. We fix the b-quark MSbar mass mˉbmbMSˉ(mbMSˉ)\bar{m}_b \equiv m_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) on Upsilon(1S) and compute the higher levels. The effect of the charm mass decreases mˉb\bar{m}_b by about 11 MeV and increases the n=2 and n=3 levels by about 70--100 MeV and 240--280 MeV, respectively. We provide an extensive quantitative analysis. The size of non-perturbative and higher order contributions is discussed by comparing the obtained predictions with the experimental data. An agreement of the perturbative predictions and the experimental data depends crucially on the precise value (inside the present error) of alpha_s(M_Z). We obtain mbMSˉ(mbMSˉ)=4190±20±25±3 MeVm_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) = 4190 \pm 20 \pm 25 \pm 3 ~ {\rm MeV}.Comment: 33 pages, 21 figures; v2: Abstract modified; Table7 (summary of errors) added; Version to appear in Phys.Rev.
    corecore