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S. Recksiegel
Theory Group, KEK, Tsukuba, Ibaraki, 305-0801 Japan

Y. Sumino
Department of Physics, Tohoku University, Sendai, 980-8578 Japan

~Received 29 June 2002; published 9 January 2003!

Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably
well within the nonrelativistic bound state theory based on perturbative QCD. In that calculation, however, the
fine splittings and theS–P level splittings are predicted to be considerably narrower than the corresponding
experimental values. We investigate the bottomonium spectrum within a specific framework based on pertur-
bative QCD, which incorporates all the corrections up toO(aS

5mb) andO(aS
4mb), respectively, in the com-

putations of the fine splittings and theS–P splittings. We find that the agreement with the experimental data for
the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as
compared to the Coulomb wave functions. The agreement of theS–P splittings with the experimental data also
becomes better. We find that natural scales of the fine splittings and theS–P splittings are larger than those of
the bound states themselves. On the other hand, the predictions of the level spacings between consecutive
principal quantum numbers depend rather strongly on the scalem of the operator}CA /(mbr 2). The agreement
of the whole spectrum with the experimental data is much better than the previous predictions whenm
.3 –4 GeV foraS(MZ)50.1181. There seems to be a phenomenological preference for some suppression
mechanism for the above operator.

DOI: 10.1103/PhysRevD.67.014004 PACS number~s!: 12.38.Bx
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I. INTRODUCTION

For a long time most successful theoretical approache
study the heavy quarkonium spectra have been those b
on various phenomenological potential models. These mo
approaches have been capable not only of reproducing
charmonium and bottomonium spectra to a high accura
but also of explaining various other properties of hea
quarkonia such as their transition rates and decay ra
Through this success, these phenomenological models
established, essentially, that the heavy quarkonium states
be described well as nonrelativistic bound state systems;
e.g. @1# for one of the most recent analyses. On the ot
hand, the problem of the phenomenological approache
that it is difficult to improve the theoretical predictions sy
tematically, and that it is difficult to relate the parameters
the models to the fundamental theory.

Recently there has been new progress in explaining th
heavy quarkonium spectra within the framework of nonre
tivistic bound state theory based on perturbative QCD. It
been shown that, by incorporating the cancellation
O(LQCD) renormalons contained in the pole mass and
static QCD potential, the gross structure of the bottomoni
spectrum is reproduced reasonably well by the perturba
computation of the spectrum up toO(1/c2)5O(aS

4mb) @2,3#.
Furthermore, it has been shown that the static QCD poten
calculated in a series expansion inaS up to O(aS

3), agrees
well with typical phenomenological potentials in the regi
relevant to bottomonium spectroscopy, once theO(LQCD)
renormalon contained in the QCD potential is cancel
against that contained in theb-quark pole mass@4,5#. Since
the static QCD potential calculated by lattice simulations
consistent with the phenomenological potentials in this
0556-2821/2003/67~1!/014004~14!/$20.00 67 0140
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gion @6,7#, all these calculations are consistent with one a
other. See also@8#, which made a direct comparison of lattic
results and perturbative predictions of the QCD potential i
renormalon-subtracted scheme and found the same co
tency.

The key concept which led to these new results from p
turbative QCD is the following. Conventionally, theoretic
calculations of the energy levels of a nonrelativistic qua
antiquark bound state closely followed that of a QED bou
state such as positronium: it starts from the natural pict
that, when an electron and a positron are at rest and far a
from each other, they tend to be free particles and the t
energy of the system is given by the sum of the energie
the two particles~pole masses!; as the electron and positro
approach each other, the energy of the system decrease
to the negative potential energy, so that the total energy
the bound state is given as the sum of the pole masses m
the binding energy. When the calculation along the same
was applied to the quark-antiquark system, however, the
turbative expansion of the bound state energy turned ou
be poorly convergent, due to the contributions from infrar
~IR! gluons with wavelengths of orderLQCD

21 . We can regard
this as reflecting the invalidity of the free quark picture wh
the quark and antiquark are far apart from each other. On
other hand, intuitively we expect that there should be a w
to calculate the bound state energy in which the contributi
of IR gluons can be mostly eliminated. This is because wh
the boundstate size is sufficiently smaller thanLQCD

21 , IR
gluons cannot resolve the color charges of the constitu
particles, so that they decouple from this color-singlet s
tem. Indeed this idea was theoretically validated in the l
guage of renormalons and their cancellation@9,10#. As a re-
sult, the convergence of the perturbative expansion impro
©2003 The American Physical Society04-1
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dramatically, extending the predictive power of perturbat
QCD beyond what could be achieved before.

Nevertheless, there remain some problems regarding
above prediction of the bottomonium spectrum from pert
bative QCD. Among them, especially interesting is the pr
lem that the fine structure in the 1Pj levels as well as the
splittings between the 2S and 1Pj states are predicted to b
considerably narrower than the corresponding experime
values. One may think that the level of agreement of
theoretical prediction with the experimental data is still co
sistent within errors: according to an estimate based on n
to-leading order renormalons, each energy level has a t
retical uncertainty of orderLQCD

3
•a2 (a is the typical size of

the corresponding bound state! which may be comparable in
size to the 2S-1Pj splittings and may be much larger tha
the fine splittings in the 1Pj levels; compare the error est
mate in@3#. One should note, however, that if we calcula
these level splittings instead of the individual energy leve
theO(LQCD

3 ) renormalons should get largely cancelled wh
we take the differences of the energy levels. Hence, the
oretical uncertainties of the splittings can be much sma
than those of the individual energy levels, and the disag
ment between the theoretical prediction and the experime
data may be quite serious. It is important to clarify whethe
is possible to resolve these disagreements in the fine s
tings and theS-P splittings within the context of perturbativ
QCD, e.g. by including higher-order corrections, or wheth
we need to take into account specific nonperturbative con
butions for this purpose.

In this paper we investigate this problem of the fine sp
tings and theS-P splittings in the bottomonium spectrum
within a specific framework based on perturbative QCD.
note that these splittings have been successfully reprod
by the phenomenological potential models, and that a c
nection between the static QCD potential and phenome
logical potentials has been elucidated in@4,5#. In order to
take advantage of these results, we develop a framew
which enables detailed comparison of the predictions of
phenomenological models and of perturbative QCD. We a
incorporate some of the higher-order corrections to the n
relativistic Hamiltonian of the quark-antiquark system whi
have not been included in the analysis@3#.

The basic theoretical ingredients of our analysis are
follows: ~1! We take into account the cancellation of th
O(LQCD) leading renormalons by reexpressing theb-quark
pole mass in terms of the modified minimal subtracti
scheme (MS̄) mass.~2! We take a specific scheme for th
perturbative expansion such that all the corrections up
O(aS

4mb) andO(aS
5mb) are incorporated in the calculatio

of theS-P splittings and the fine splittings, respectively. Fu
thermore, some of the higher-order corrections, which app
to be important for these observables, are incorporated.

The organization of the paper is as follows. In Sec. II
present the framework of our calculation. We examine
energy levels and the wave functions of our zeroth-or
Hamiltonian in Sec. III. The analysis of the fine splittings
given in Sec. IV and that of theS-P level splittings in Sec. V.
Then, in Sec. VI, we compare the whole structure of
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bottomonium spectrum given by our prediction, by other th
oretical predictions and by the experimental data. Concl
ing remarks are given in Sec. VII. We derive a formula us
ful for our analysis in the Appendix.

II. FRAMEWORK OF CALCULATION

A. Hamiltonian up to O„1Õc2
…

We first recall the nonrelativistic Hamiltonian of a qua
and antiquark pair given in the series expansion in 1/c up to
O(1/c2) which is determined from perturbative QCD.~See
e.g. @11–14#.! Considering an application to the bottom
nium states, we assume the quark~antiquark! to be theb

quark (b̄ quark!. The Hamiltonian is given by

H5H01U1WA1WNA . ~1!

We choose the zeroth-order part of the Hamiltonian to be

H052mb1
pW 2

mb
1VQCD~r !, ~2!

where mb is the pole mass of theb quark, andVQCD(r )
denotes the static QCD potential up toO(aS

3). This choice
differs from the usual zeroth-order Hamiltonian of the 1c
expansion, sinceH0 also includes theO(aS

2)5O(1/c) and
O(aS

3)5O(1/c2) terms of the QCD potential. Other opera
tors of Eq.~1! are treated as perturbations toH0, all of which
are O(1/c2) in the usual order counting in 1/c expansion.
U1WA constitutes theO(1/c2) part of the Breit Hamiltonian
known from QED boundstate theory, where the spi
dependent operator is given by

U5ULSLW •SW 1USFS223
~SW •rW !2

r 2 G1U0~2S223!d3~rW !,

~3!

ULS5
3CFaS

(nl )

2mb
2r 3

, US52
CFaS

(nl )

2mb
2r 3

, U05
2pCFaS

(nl )

3mb
2

,

~4!

and the spin-independent operator is given by

FIG. 1. Construction of the improved potential.
4-2
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FIG. 2. Etot
bb̄(r )52mb

1VQCD(r ) up to O(aS
N) for N

51, 2, 3 whenm is fixed inde-
pendently ofr: ~a! m51 GeV and
~b! m52 GeV. The scalem that
provides the best convergence
the perturbative series depends o
r.
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WA52
pW 4

4mb
3

1
pCFaS

(nl )

mb
2

d3~rW !2
CFaS

(nl )

2mb
2r

3S pW 21
1

r 2
r i r j pj pi D . ~5!

On the other hand,

WNA52
CACF~aS

(nl )!2

2mbr 2
~6!

represents the operator characteristic to the non-Abe
gauge theory. In this paper, unless the argument is spec
explicitly, aS

(nl ) denotes the strong coupling constant ren

malized at the renormalization scalem, defined in the MS̄
scheme withnl active flavors, i.e.aS

(nl )[aS
(nl )(m); CF54/3

and CA53 are the color factors;LW and SW are, respectively,
the orbital-angular momentum and the total spin of
quark-antiquark pair. For thebb̄ system,nl54.

B. Improved potential

In our analysis of the bottomonium spectrum and wa
functions, we use an improved ‘‘potential’’Eimp(r ) instead of
2mb1VQCD(r ) in the zeroth-order HamiltonianH0. This
Eimp(r ) is constructed in the following way: We divide th
range ofr into three regions by introducing ultraviolet~UV!
and infrared~IR! distance scales,r UV and r IR , see Fig. 1.

FIG. 3. Dependence ofEtot
bb̄(r ) on the scalem for three different

values ofr 51,2,3 GeV~solid, dashed, dash-dotted, respectivel!.
For large r, the flat region~less m-dependent region! moves to
smaller scales.
01400
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-

e

e

~i! At intermediate distances,r UV,r ,r IR , where the
bulk of the bottomonium wave functions are located,Eimp(r )

is identified with the total energy of the staticbb̄ system

Etot
bb̄(r )um5m2(r )5@2mb1VQCD(r )#um5m2(r ) computed in@5#.

Etot
bb̄(r ) is defined in Eq.~5! of that paper and depends on th

parametersaS
(3)(m), m, m̄b andm̄c : these are, respectively

the strong coupling constant defined in the MS̄scheme with

3 active flavors, the renormalization scale, theb-quark MS̄

mass renormalized at theb-quark MS̄ mass scale and th
same for thec quark. Theb-quark pole massmb is reex-

pressed in terms ofm̄b , such that theO(LQCD) renormalons

are cancelled inEtot
bb̄(r ). In identifying Eimp(r ) with Etot

bb̄(r ),
the scalem is determined as a function ofr according to the
second prescription@m5m2(r ), Eq. ~14!# in @5#: since

Etot
bb̄(r ) is less m dependent and its series expansion co

verges better if we choose a larger value form when r is
smaller, and if we choose a smaller value form when r is
larger, we consider our choice ofm to give a more accurate

prediction for Etot
bb̄(r ) than choosing some fixed

(r -independent! value ofm; see Figs. 2,3. Thec-quark MS̄

mass is taken asm̄c51.243 GeV@2#. We will explain how

we fix m̄b in our analysis below. For other details, we follo
the convention of Secs. II A and II B of@5#.

~ii ! At short distances,r ,r UV , we use a renormalization
group improved QCD potential. It is obtained by integrati
the three-loop renormalization-group improved interqua
force F(r )[2dVQCD(r )/dr, following the method of Sec
IV of @4#. There, it was shown that the QCD potential b
comes more convergent if we improve the interquark fo
by means of the renormalization group and integrate it o
r, rather than directly improving the QCD potential by th
renormalization group.1 The initial value for the renormaliza
tion group evolution ofF(r ) and the constant part ofEimp(r )
are determined such thatEimp(r ) becomes continuous atr
5r UV up to the first derivative.

~iii ! At long distances,r .r IR , we use a linear potential
Eimp(r )5C1r 1C2, whereC1 and C2 are determined such

1Here, the renormalization-group improvement ofVQCD(r ) refers
to that using theV-scheme beta function~the second paper of@12#!
and is different from the renormalization-group improvement
@30–33# ~resummation of the next-to-next-to-leading logarithms!.
4-3
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that Eimp(r ) becomes continuous atr 5r IR up to the first
derivative.

The main part of the improved potentialEimp(r ) is that
given in the intermediate-distance region~i!. Indeed this part
of the potential dictates the main features of the results of
analysis. According to its construction, however,Eimp(r ) as
defined in the region~i! becomes unstable and unreliable
r &1/mb andr *1/LQCD. This is the reason why we continu
it to other definitions at short and long distances. The sh
and intermediate-distance parts~i! and~ii ! are determined by
perturbative QCD, whereas the long-distance part~iii ! is not.
We will show that the shape ofEimp(r ) in the long-distance
region~iii ! does not affect the results of our analysis sign
cantly. It should be noted that, with our definition, them
dependence ofEimp(r ) has been completely eliminated. Th
m dependences mentioned later in this article are those w
stem from the other terms of the Hamiltonian~see below!.
We urge the reader to consult@4,5# for the physics back-
ground and detailed features ofEimp(r ) as defined in the
regions ~i! and ~ii !. In our analysis below, we setr UV
50.5 GeV21 and r IR54.5 GeV21.

C. Perturbative expansion

We solve the nonrelativistic Schro¨dinger equation numeri
cally with the improved potential,

H0
(imp)uc&5Ec

(0)uc&, H0
(imp)5

pW 2

mb
1Eimp~r !, ~7!

and determine the zeroth-order energy levelEc
(0) and wave

function uc& of a quarkonium state. We treatU, WA andWNA
as perturbations and calculate the perturbative correction
the energy level by

DEc5^cu~U1WA1WNA!uc&. ~8!

We will also examine corrections induced by some of
O(1/c3) operators:

dU5dULSLW •SW 1dUSFS223
~SW •rW !2

r 2 G , ~9!

dULS5
3CFaS

(nl )

2mb
2r 3

3
aS

(nl )

p H b0

2
~,m21!

2
2

3
CAS ,m2

55

24D1
2

3
CF2

5

9
TRnl J , ~10!

dUS52
CFaS

(nl )

2mb
2r 3

3
aS

(nl )

p H b0

2 S ,m2
4

3D
2CAS ,m2

97

36D1CF2
5

9
TRnl J , ~11!
01400
ur
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dWNA5
CF~aS

(nl )!2

mbr 2
3

aS
(nl )

p H ~CF22CA!b0

4
,m1

b2

2 J
2

~CFaS
(nl )!2

4mbr 2
3

aS
(nl )

p H b0S ,m2
3

4D1
a1

4 J , ~12!

where

,m5 log~mr !1gE , ~13!

,m5 log~mbr !1gE , ~14!

b05
11

3
CA2

4

3
TRnl , ~15!

a15
31

9
CA2

20

9
TRnl , ~16!

b25S 65

18
2

8

3
log 2DCFCA2

2

9
CFTRnl

2S 101

36
1

4

3
log 2DCA

21
49

36
CATRnl . ~17!

gE50.5771 . . . is theEuler constant;TR51/2. The spin-
dependent operatorsdULS anddUS were derived in@15,16#.
~Earlier incomplete results can be found in@17,11#.! We de-
rived dWNA from the result of@18# in the following way: We
discard the logarithm originating from the IR divergence a
sociated with the energy scale. This gives the first term
Eq. ~12!. We have to take into account the contributio
which come from the unitary transformation,H
5eXH8e2X, whereH8 is the Hamiltonian of@16# and2

^pW 1kW uXupW &52
pCFaS

(nl )~k!

mbk2 S 11
2pW •kW

k2 D , k5ukW u.

~18!

The second term of Eq.~12! is generated by this unitary
transformation. We note that the nonlogarithmic part
dWNA cannot be determined unambiguously, since it mix
with other O(1/c3) operators through IR divergence. Ou
definition merely represents one possible scheme. Only w
we add all the contributions to the spectrum atO(1/c3), the
sum is free from IR divergence and can be defined una
biguously. Since at present we do not know the full form
the Hamiltonian up to3 O(1/c3), this problem cannot be cir
cumvented in any case.

2The operator representation ofX reads

X52
CFaS

(nl)

4mbr
F~11irW•pW!1

b0aS
(nl)

4p
$2,m1~2,m21!irW•pW%G1O~aS

3!.

3The O(1/c3)5O(aS
4) nonlogarithmic term ofVQCD(r ) is not

known yet, which would mix withWNA through IR divergence. All
otherO(1/c3) operators of the Hamiltonian have been identified
Ref. @16#.
4-4
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We have to specify how we treat the pole massmb in the
operatorspW 2/mb , U, WA , WNA , dU anddWNA . We express
the pole massmb in terms of the MS̄massm̄b in the series
expansion inaS

(4)(m) up toO(aS
3) using Eqs.~2!, ~7! and~8!

of @5#.4 After that we can, in principle, reexpand these ope
tors inaS

(4)(m), since the pole mass enters the denomina
and,m . There is, however, no known guiding principle ho
to organize these expansions, since such reexpansions c
be carried out consistently with the expansions in5 1/c. This

is in contrast to the reexpansion ofEtot
bb̄(r )52mb

1VQCD(r ), which has a guiding principle by the cancellatio
of O(LQCD) renormalons, although the reexpansion is
deed inconsistent with the 1/c expansion. Hence, we keep th
pole mass as a function ofm̄b , aS

(4)(m) and m and do not

reexpand the operators (pW 2/mb , U, WA , WNA , dU, dWNA);
the values of the pole mass are shown in Table I correspo
ing to aS

(5)(MZ)50.1181 andm̄b54.190 GeV. We will ex-
amine how the uncertainty of the pole mass of orderLQCD
affects our predictions in Sec. VI.

We take the input for the strong coupling constant
aS

(5)(MZ) and calculateaS
(3)
„m2(r )… for Eimp(r ) andaS

(4)(m)
for the other operators. We evolve the coupling by solv
the 3-loop renormalization-group equation numerically a
match it to the 4- and 3-flavor couplings successiv
through the matching condition@24#.6 @Although the 4-loop
running of the MS̄coupling constant is available, we con
sider the 3-loop running more consistent in our analy
which incorporates corrections up to the 2-loop finite part
VQCD(r ).#

Our choice of the zeroth-order Hamiltonian and the w
we organize the perturbative expansion is largely motiva
by the success of phenomenological potential models
fact, the above organization of the perturbative expans
follows, to a large extent, the approaches of phenomenol
cal model analyses, if we identify ourH0

(imp) with the non-
relativistic Hamiltonian, p2/m1Vpheno(r ), used in those
analyses. SinceEimp(r ) agrees well with typical phenomeno
logical potentials up to an additive constant, we expect t
we can make close comparisons with phenomenolog

4These formulas were derived originally in@19–21#.
5For instance, if we organize the perturbative expansions of

energy levels appropriately, renormalons contained in them ar
orderLQCD

4 , whereas if one expands the levels in 1/c, renormalons
become orderLQCD

3 and worsen the perturbative convergence@22#.
This may be regarded as an explicit example of problems due t
inconsistency between 1/c power counting and renormalon cance
lations ~beyond those controlled bye expansion@23#!.

6The matching scales are taken asm̄b andm̄c , respectively.

TABLE I. Dependence of the pole massmb„m̄b ,aS
(4)(m),m… on

the scalem for aS
(5)(MZ)50.1181 andm̄b54.190 GeV.

m ~GeV! 1.0 2.0 3.0 4.0 5.0

mb ~GeV! 5.458 5.131 5.027 4.969 4.930
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model analyses, and that eventually the bottomonium sp
trum may be reproduced with a good accuracy. Note that
zeroth-order quarkonium wave functions, which are de
mined fromH0

(imp) , include some of the higher-order corre
tions in the usual order counting of the 1/c expansion, since
Eimp(r ) includes theO(1/c) andO(1/c2) corrections to the
static QCD potential. By the same token, the zeroth-or
energy levels are different from the Coulomb energy leve
and in particular they depend on the orbital angular mom
tum l.

III. ZEROTH-ORDER ENERGY LEVELS, WAVE
FUNCTIONS AND SCALES

We show numerical solutions to the zeroth-order Sch¨-
dinger equation~7!. Here and hereafter we take the inp
value for the strong coupling constant to be the present w
average valueaS

(5)(MZ)50.1181@25#. Through Secs. III–V

we use the bottom quark MS̄massm̄b54.190 GeV taken
from @3#. We show the zeroth-order energy levelsEc

(0) in
Table II. The squared radial wave functions multiplied by t
phase space factor are shown in Fig. 4. Both the ene
levels and the wave functions depend on the scalem ~only!

through the pole mass inpW 2/mb in the Schro¨dinger equation.
The energy levelsEc

(0) vary by about 10 MeV~20 MeV!
whenm is varied from 2 to 5 GeV~1 to 2 GeV!. Nonethe-
less, if we take the difference of any of the two energy leve
them dependences cancel mostly. Them dependences of the
wave functions are fairly weak.

In @2,3# the scalem5mc for each quarkonium stateuc&
was fixed by minimizing them dependence of each energ
level calculated in a fixed-order perturbative expans
~minimal-sensitivity prescription!. The scale fixed in this
way turns out to represent the physical size of the co
sponding quarkonium state fairly well. This was shown in@2#
by comparing the scalemc and the support function define
by

f c~q!5u~m̄2q!2E
0

`

drr 2uRc~r !u2
sin~qr !

qr
, ~19!

whereRc(r ) is the radial part of the wave function for th
stateuc&. The support function represents the support in
momentum-space integral in the calculation of~the major
part of! the energy level. The Coulomb wave function, eva

e
of

an

TABLE II. Zeroth-order energiesEc
(0) . The units are GeV. Un-

less otherwise stated, all tables and figures usem̄b54.190 GeV,

aS
(5)(MZ)50.1181 and the pole massmb„m̄b ,aS

(4)(m),m… as ex-
plained in the text.

m 1S 1Pj 2S 2Pj 3S

1.0 9.476 9.877 9.986 10.186 10.247
2.0 9.498 9.896 10.007 10.203 10.262
3.0 9.505 9.902 10.013 10.209 10.268
4.0 9.509 9.906 10.017 10.212 10.271
5.0 9.512 9.908 10.020 10.214 10.272
4-5
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FIG. 4. r 2uRc(r )u2 for different values ofm51,2,3,4 and 5 GeV, whereRc(r ) denotes the radial part of the zeroth-order ene
eigenfunction. The area below each curve is normalized to unity. The one curve that visibly differs from the others corresponm
51 GeV. Note that the scales differ between the plots.
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ated withaS
(4)(mc), was used to compute the support fun

tion f c(q); the charm mass effects in loops were not tak
into account. Here we compare the support function co
puted with our zeroth-order wave function and the sc
fixed in @3#, both of which include the charm mass effec
The resulting support functions for theS states are shown in
Fig. 5 and for theP states in Fig. 6. We see that with respe
to the treatment in@2#, the support functions are shifte
slightly towards higher momentum. This is reasonable, si
the wave functions calculated here are peaked closer to
origin in coordinate space than the Coulomb wave functi
~see e.g. Fig. 7 below!. Since the scalesmc are located
within the IR ‘‘tails’’ of the corresponding support function
f c(q), we confirm that the above interpretaion of th
minimal-sensitivity scalemc is valid also when we include

FIG. 5. Support functions for theSstates. The solid curves sho
the support functions as defined in Eq.~19!; for comparison of the
relevant scales,as

(4)(m) is also plotted~dashed curve!. Since the
analysis that we advocate in this work does not attribute scale
the individual states, the scales indicated by the dotted lines
taken from@3#, Table II.
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the charm mass effects and theO(1/c) andO(1/c2) correc-
tions of VQCD(r ) to the wave functions.

IV. FINE SPLITTINGS

In this section we examine the fine splittings in the bot
monium spectrum within our framework and compare th
with the experimental data as well as with previous theo
ical predictions in the literature. Within perturbative QCD,
is expected that in principle the fine splittings can be co
puted much more accurately than the individual energy l
els. This is because the potentials which contain or
LQCD

3 r 2 renormalons~the static QCD potential andWNA) do
not induce the fine splittings, so that these renormalons c
cel in the computation of the fine splittings.

The fine splittings~or fine structure! are the level split-
tings among the states with the same principal quantum n
ber n, orbital-angular momentuml .0 and spins but with
different total angular momentumj. Experimentally, the fine

to
re FIG. 6. Support functions for theP states. Notations are th
same as in Fig. 5.
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splittings have been observed among the 13Pj@(n,l ,s)
5(2,1,1)# and 23Pj@(n,l ,s)5(3,1,1)# states; we therefore
examine the predictions for these splittings.

In perturbative QCD the fine splittings are induced first
O(aS

4mb)5O(1/c2) by the operatorU:

DEU
(C)5^cCuUucC&

5
~CFaS

(nl )!4

8n3
mb3

DS13XLS

l ~ l 11!~2l 11!
~ l .0!, ~20!

where

DS[2K SW 223
~rW•SW !2

r 2 L 5
2l ~ l 11!s~s11!23XLS26XLS

2

~2l 21!~2l 13!
,

~21!

XLS[^LW •SW &5
1

2
@ j ~ j 11!2 l ~ l 11!2s~s11!#. ~22!

This is the fixed-order formula used in@2,3#. In this formula,
the Coulomb wave functionucC& is used to compute the
expectation value. The scale dependence ofDEU

(C) is large,
since it is proportional to@aS

(4)(m)#4: three powers ofaS

come from the Coulomb wave function^cCu3ucC&, and one
power comes from the operatorU. In @2,3# the scalem is
fixed by the minimal-sensitivity prescription; cf. the previo
section.

In our approach, we calculate the fine splittings fro
DEU5^cu(U1dU)uc&. As compared to the fixed-order fo
mula, some of the higher-order corrections are incorpora
through the wave functionuc& and the operatordU.

In phenomenological approaches, one computes the
splittings using the same operatorU but using the wave func
tions determined from phenomenological potentials:

DEU
(pheno)5^cphenouUucpheno&. ~23!

Some of the higher-order corrections toU constrained by the
Gromes relation@26# have also been incorporated. As an e

FIG. 7. Comparison of QCD~solid!, Cornell ~dashed! and Cou-
lomb ~dash-dotted! 1P-wave functions. For the Coulomb wav
function aS50.36 has been used.
01400
t
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ample we compare our results with those of a phenome
logical model with a Coulomb-plus-linear potential~Cornell
potential! @27#:

H0
(Cornell)5

pW 2

mb
1VCornell~r !, ~24!

VCornell~r !52
k

r
1

r

a2
~25!

with k50.52 anda52.34 GeV21.
Table III compares the expectation values of the opera

ULS and US with respect to the Coulomb wave functio
ucC&, our zeroth-order wave functionuc& and the Cornell
wave functionucCornell&. The operatorsULS and US induce
the fine splittings through XLSULS2DSUS , where
(XLS ,DS)5(22,22),(21,1),(1,21/5) for j 50,1,2, re-
spectively, and (l ,s)5(1,1). The fine splittings between ad
jacent levels are thereforeULS23US for P12P0 and 2ULS

16US/5 for P22P1. The values ofaS
(4)(m) in the operators

ULS and US are taken as 0.36 and 0.468 for the 1Pj states
and as 0.36 and 0.726 for the 2Pj states. Also the same
values ofaS

(4)(m) are used for calculating the Coulomb wav
functions ucC&. The first value~0.36! corresponds to the
value used in the phenomenological analysis@1#. The latter
values ~0.468 and 0.726! are those for the 1P1 and 2P1
states which were determined by the minimal-sensitivity p
scription in @3#. Taking into account the numerical value

FIG. 8. Comparison of the integrands for^1PuULSu1P&; the
conventions are the same as in Fig. 7.aS50.36 has been used bot
in the operatorULS and in the determination of the Coulomb wav
function. Note that the scale of the horizontal axis is different fro
Fig. 7.

TABLE III. Expectation values~in MeV! of the operatorsULS

andUS . The mass used in the operators ismb55.027 GeV corre-

sponding tom̄b54.190 GeV andm53 GeV.

^cCu3ucC& ^cQCDu3ucQCD& ^cCornellu3ucCornell&
as ULS US ULS US ULS US

1P
0.360 2.08 20.69 13.71 24.57 16.07 25.36
0.468 5.95 21.98 17.82 25.94 20.89 26.96

2P
0.360
0.726

0.62
10.22

20.21
23.41

8.19
16.52

22.73
25.51

12.92
26.06

24.31
28.69
4-7
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TABLE IV. Fine splittings computed from̂cuUuc& and ^cuU1dUuc&. m is in GeV; the splittings are
given in MeV.

1P1-1P0 1P2-1P1 2P1-2P0 2P2-2P1

m as(m) U U1dU U U1dU U U1dU U U1dU

1.0 0.454 33.3 22.3 26.7 16.2 20.7 12.9 16.6 9.0
2.0 0.301 22.7 24.5 18.2 18.8 13.7 14.4 11.0 10.9
3.0 0.253 19.3 23.3 15.4 18.1 11.5 13.6 9.2 10.5
4.0 0.228 17.5 22.3 14.0 17.4 10.4 13.0 8.3 10.1
5.0 0.212 16.3 21.5 13.0 16.8 9.7 12.6 7.7 9.7
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from the table,ULS andUS give roughly the same contribu
tion to theP1-P0 splitting, while theP2-P1 splitting is domi-
nated byULS .

We see that the expectation values ofULS and US with
respect to our wave functionuc& and the Cornell wave func
tion ucCornell& are very much larger than the expectation v
ues with respect to the Coulomb wave functionucC&.7 The
reason for this behavior can be understood in the follow
way: Since the potentialsEimp(r ) andVCornell(r ) are steeper
~i.e. the attractive forces are stronger! than the Coulomb po-
tential in the intermediate-distance region,8 the wave func-
tions are more centered towards the origin foruc& and
ucCornell& than for ucC&; see Fig. 7 which compares th
squared radial wave functions multiplied by the phase sp
factor for the 1P states. Therefore the wave functions^rWuc&
and^rWucCornell& are enhanced close to the origin as compa
to the Coulomb wave function. The enhancement factors
out to be large for theP-wave states.9 Since the expectation
values ofULS and US are determined mostly by the shor
distance behavior of the wave functions, they are enhan
by large factors. This feature can be verified in Fig. 8, wh
we compare the integrands when the expectation value
ULS are expressed as integrals overr; the main contributions
come from distancesr &2 GeV21. We should stress that th
enhancement of the wave functions originates mainly fr
the behavior of the potentials in the intermediate-dista
region and not from the short-distance behavior. This can
seen from the fact that the difference between^cuU (LS,S)uc&

7This is not necessarily true for the 2P states withaS50.726, but
this can be regarded as originating from another effect, which
explain below. Namely, the valueaS50.726 is unrealistically large

8The cancellation ofO(LQCD) renormalons suggests that this b
havior can be understood naturally in terms of the QCD fo
F(r )52VQCD8 (r )52CFaF(1/r )/r 2: F(r ) becomes more attrac
tive than the Coulomb force asr increases due to the running of th
F-scheme coupling constantaF(1/r ) @4,8#.

9By way of example, if we squeeze the functionr n such that it
takes the same value at half distance, i.e.r n→(2r )n, then the en-
hancement factor becomes 2n. Thus, the enhancement factor
larger for a largern. For theP-wave states,n54, because 2 power
come from the wave function squared and 2 powers come from
phase space.
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and^cCornelluU (LS,S)ucCornell& is much smaller than the differ
ence between̂cuU (LS,S)uc& and^cCuU (LS,S)ucC&: the essen-
tial difference between our potentialEimp(r ) and the Cornell
potential resides in the short-distance region.

We include also the contribution of theO(1/c3) operator
dU into our prediction of the fine splittings. As far as w
know, there is no other operator which contributes to the fi
splittings atO(1/c3). Considering that our wave functio
uc& includes all the next-to-leading order@O(1/c)# correc-
tions, our prediction for the fine splittings incorporates all t
effects up to O(aS

5mb) @O(1/c) relative to the leading
O(aS

4mb) splittings#. Inclusion of the operatordU reduces
the scale dependence of our prediction. In Table IV we co
pare the fine splittings calculated from the matrix eleme
^cuUuc& and from^cuU1dUuc&. The former depend onm
rather strongly and are larger for smallerm, sinceU is pro-
portional toaS

(4)(m).10 We see that the scale dependence
decreased considerably by the effect ofdU. The scale de-
pendences become minimal atm.2 GeV for both 1Pj and
2Pj states. We may try to reproduce the splittings calcula
with ^cuU1dUuc& at these scales by taking an appropria
choice of the scales in the lower-order predictions~the split-
tings calculated witĥ cuUuc&). Then the scales becomem
.2 GeV for both the 1Pj and 2Pj states. All these scale
are larger than the scales chosen for the respective stat
@3#, which are fixed by minimizing the scale dependence
the individual energy levels. (m.1 GeV for the 1Pj states
andm.0.8 GeV for the 2Pj states; see Fig. 6.! This feature
is consistent with a naive expectation: we would expect t
the latter scales represent the typical scales of the bind
energies, or the inverse of the sizes of the bound states~Fig.
6!, whereas the former scales represent those probed by
operatorsU or U1dU, which are larger because the cont
butions to the matrix elements come from shorter distan
~Fig. 8!.

To our knowledge, so far there has been no system
argument on the order of renormalons contained in the
splittings. Naively we expect that the largest renorma
contained in the calculation of the fine splittings would be

e

e

e 10The scale dependence of the wave functionsuc& through the
pole mass is very weak; cf. Fig. 4.
4-8
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order LQCD
3 /mb

2.1 –10 MeV. This estimate is based on th
Gromes relation@26# which tells us that a part of the operat
ULS is determined from the static QCD potential:

2
1

2mb
2r

dVQCD

dr
LW •SW ~26!

and the fact thatdVQCD(r )/dr contains anO(LQCD
3 r ) renor-

malon. We may take this as an order of magnitude estim
of uncertainties of our present predictions for the fine sp
tings. Compared with this error estimate, our predictions
the fine splittings calculated witĥcuU1dUuc& in Table IV
are in reasonable agreement with the experimental data

We are now able to interpret the reasons why the fi
splittings of the energy levels computed in@3# turned out to
be quite small for the 1Pj states but not so much for the 2Pj
states. The first point to note is that large enhancement
tors are generated by the fact that the quarkonium wave fu

TABLE V. S-P splittings. The splittings due to the differences
Ec

(0) , U, U1dU, WA , WNA and WNA1dWNA are given for the
2S-1P1 and 3S-2P1 splittings. All values are in MeV (m in GeV!.

2S-1P1

m Ec
(0) U U1dU WA WNA WNA1dWNA

1.0 109.4 22.1 17.6 210.6 266.5 25.6
2.0 110.7 15.0 15.1 210.0 228.9 219.1
3.0 111.1 12.7 13.7 29.8 220.4 220.3
4.0 111.4 11.5 12.8 29.7 216.5 219.4
5.0 111.5 10.7 12.2 29.7 214.2 218.3

3S22P1

m Ec
(0) U U1dU WA WNA WNA1dWNA

1.0 60.7 12.6 9.2 20.5 229.8 18.8
2.0 59.4 8.3 8.2 21.5 213.0 26.8
3.0 59.0 7.0 7.5 21.9 29.2 28.2
4.0 58.8 6.3 7.0 22.1 27.5 28.1
5.0 58.7 5.9 6.7 22.2 26.5 27.8
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tions are more centered toward the origin if we solve
Schrödinger equation withEimp(r ) ~which we believe to be
more realistic! rather than with the Coulomb potential. Th
second point is that the natural scales to be chosen for ev
ating the expectation values of the operatorU are larger than
the natural scales for the individual energy levels: we c
firmed this by incorporating the effects of the higher-ord
operatordU, and the results are qualitatively consistent w
a naive expectation. We find that the first effect overwhel
ing the second one resulted in the quite small splittin
among the 1Pj states in@3#. On the other hand, the cance
lation of the first and the second effect resulted in reasona
sizes of the fine splittings for the 2Pj states in that paper
which, in the light of our present observations, may be
garded as rather accidental.

V. S-P SPLITTINGS

In this section we examine the splittings between
S-wave andP-wave states. In the Coulomb spectrum t
S-wave and theP-wave states with the same principal qua
tum numbern are degenerate. In perturbative QCD, the sp
tings are induced byVQCD(r ) starting fromO(1/c) as well as
by U, WA , WNA at O(1/c2). Among these operators
VQCD(r ) ~after cancelling the orderLQCD renormalon! and
WNA contain orderLQCD

3 r 2 renormalons. Therefore, the o
der LQCD

3 r 2 renormalons do not cancel completely in th
perturbative computation of theS-P splittings. Namely, the
theoretical uncertainties of theS-P splittings are expected to
be larger than those of the fine splittings.

In Table V we show theS-P splittings of our zeroth-order
energy levelsEc

(0) , which contain the effects ofVQCD(r ) up
to O(1/c2). The contributions of the operatorsU, WA and
WNA to the S-P splittings are also displayed in the sam
table. ~A convenient formula for evaluating the expectatio
values ofWA is given in the Appendix.! We expect that the
contributions of these operators would be smaller than
Ec

(0) splittings, since the operators areO(1/c2), whereasEc
(0)

contains theO(1/c) effects ofVQCD(r ). One sees that this
expectation is satisfied in most cases, the only operator
ing a contribution comparable in magnitude toEc

(0) is WNA

for relatively low scales,m.1 GeV, where this contribution
f all
vel
TABLE VI. S-P splittings. This table is similar to Table V, but here we add up the matrix elements o
the operators contributing to theS-P splitting. For comparison, the first of the three columns for each le
splitting again gives the splitting due to the difference inEc

(0) . In the second column additionallyU,WA and
WNA have been taken into account and finally in the third columndU anddWNA are added.

2S-1P1 3S-2P1

m Ec
(0) 1(U,WA ,WNA) 1(dU,dWNA) Ec

(0) 1(U,WA ,WNA) 1(dU,dWNA)

1.0 109.4 54.4 141.9 60.7 42.9 88.2
2.0 110.7 86.8 96.8 59.4 53.2 59.3
3.0 111.1 93.6 94.8 59.0 54.9 56.5
4.0 111.4 96.6 95.1 58.8 55.6 55.7
5.0 111.5 98.3 95.7 58.7 55.9 55.4

Expt. 130 100
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becomes particularly large. In fact, the scale dependenc
the contribution ofWNA is large, becauseWNA is propor-
tional to aS

(4)(m)2, whereasU andWA are proportional only
to aS

(4)(m). We see that the scale dependence is reduce
including the effect of the higher-order correctiondWNA ,
althoughWNA1dWNA is still unstable aroundm51 GeV. If
we choose a relatively large scalem.3 GeV, the contribu-
tions of the higher-order corrections,dU anddWNA , become
small and the scale dependences of theS-P splittings are
relatively small; see Tables V and VI.

Furthermore, as shown in Fig. 9, the expectation val
^cuWNAuc& and^cuWNA1dWNAuc& are dominated by short
distance contributions. Therefore, following the same line
argument as in the previous section, we expect the nat
scales for these contributions to be larger than that for
binding energy.

If we compare our predictions for theS-P splittings with
the predictions of the fixed-order perturbative expansion
@3#, there are two competing effects, just like what we fou
in the case of the fine splittings: these effects are the dif
ence of the wave functions and the difference of the scalem
in the operator. Consequently our predictions for theS-P
splittings turn out to be larger for a smaller scalem, are
typically larger than the fixed-order predictions for th
2S-1P splittings, and are of similar magnitude to the fixe
order predictions for the 3S-2P splittings. Since, however
the S-P splittings are dominated by theO(1/c) correction
from VQCD(r ) @i.e. the contributions from theO(1/c2) opera-
tors are only subleading#, the differences from the fixed
order predictions are not as pronounced as in the case o
fine splittings.

FIG. 9. ~Absolute value of the! integrand of the matrix element
of WNA ~solid! anddWNA ~dashed! for the 1Pj states. The graphs
peak at rather small distances, indicating that the natural scale
the expectation values are larger than those for the bound stat
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As long as we calculate theS-P splittings directly, as
done up to here, we see no indication of large theoret
uncertainties. However, when we examine the individual
ergy levels, some indications of fairly large uncertainti
show up. Let us now investigate this feature.

Table VII shows the expectation values of the operat
U, U1dU, WA , WNA , WNA1dWNA for all the states and
with m53 GeV. We see that the expectation values ofWNA

andWNA1dWNA for the 1S state are much larger than wh
we would expect forO(1/c2) corrections. Moreover, for al
the states, the scale dependences of the expectation valu
WNA1dWNA are large, and are comparable to those ofWNA ;
see Table VIII.~A large part of these scale dependences c
cel in theS-P splittings.! The reason for the large scale d
pendences is that the nonlogarithmic term ofdWNA is very
large. Since at present we do not know the full form of t
Hamiltonian up toO(1/c3), we cannot draw a definitive con
clusion whether this problem of large scale dependence
be remedied.

The agreement of theS-P splittings between the theore
ical predictions and the experimental data has impro
somewhat from the fixed-order results@3#. It is, however, not
as good as one would naively expect. Namely the differen
of the splittings between our predictions~for the scale choice
m.2 –5 GeV) and the experimental data are larger than
contributions of theO(1/c2) operators. As stated in the In
troduction, it is important to clarify whether the level of dis
agreement is still consistent within perturbative uncertaint
From the examination of the contributions to the individu
energy levels, we conjecture that there would still be la
theoretical uncertainties to theS-P splittings, particularly
from the contributions ofWNA , since at present we have n
systematic argument on how much of theO(LQCD

3 ) renorma-
lons cancel in theS-P splittings. That is, we consider th
cancellation of the large and scale dependent contribut
from WNA in the S-P splittings to be accidental, unless w
find a systematic argument in support of it. In this regard,
consider the predictions for theS-P splittings much less re-
liable than those for the fine splittings.

There are also other indications that the operatorWNA
becomes a source of instability of theoretical predictions.
instance, Ref.@28# addressesWNA to be the source of the
large uncertainties of the cross section fore1e2→t t̄ close to
threshold. Reference@29# shows that IR logarithms, which
are related to higher-order corrections toWNA and VQCD,
generate very large corrections to the bottomonium spect
at O(aS

5mb) and consequently cause a large uncertainty to

for
TABLE VII. Expectation values of the operatorsU, U1dU, WA , WNA and WNA1dWNA at the scale
m53 GeV.

1S 1P0 1P1 1P2 2S 2P0 2P1 2P2 3S

U 13.2 225.7 26.4 9.0 6.3 215.4 23.8 5.4 3.2
U1dU 13.2 230.7 27.4 10.6 6.3 217.9 24.3 6.2 3.2
WA 222.1 218.8 218.8 218.8 228.6 218.9 218.9 218.9 220.8
WNA 279.1 211.9 211.9 211.9 232.3 26.4 26.4 26.4 215.6
WNA1dWNA 2130.2 231.4 231.4 231.4 251.7 216.8 216.8 216.8 225.0
4-10
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TABLE VIII. Expectation values of the operatorsU, U1dU, WA , WNA andWNA1dWNA for the states
2S and 1P1 for various scalesm. For the 2S state we leave outU1dU becausedU50 for l 50.

2S 1P1

m U WA WNA WNA1dWNA U U1dU WA WNA WNA1dWNA

1.0 11.0 236.7 2104.8 273.0 211.1 26.5 226.1 238.3 298.6
2.0 7.4 230.6 245.6 263.0 27.6 27.7 220.5 216.8 244.0
3.0 6.3 228.6 232.3 251.7 26.4 27.4 218.8 211.9 231.4
4.0 5.7 227.5 226.2 245.0 25.8 27.2 217.8 29.6 225.7
5.0 5.3 226.9 222.6 240.6 25.4 27.0 217.2 28.3 222.3
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Furthermore, Refs.@30–32# resum the IR logs; it was found
that WNA is reduced due to this resummation in the cor
sponding Wilson coefficients. Reference@32# claims that the
resummations lead to a stable theoretical prediction for
top threshold cross section. Reference@33#, however, re-
ported a result which disagrees with that of@30,31#.

In this paper we discard the IR logs altogether, wh
appear first atO(aS

5mblogaS) in the spectrum. This is no
because we consider them unimportant, but because we
lieve that we are not yet in a position to treat this proble
properly. The present treatment of the IR logs in@18,30–33#
seems to comprise following unsatisfactory aspects in
calculations of the heavy quarkonium spectrum and the
threshold cross section~besides the disagreement!. Since
logaS is not particularly large, it appears that the nonlog
rithmic terms cannot be neglected in comparison to the
logs. These nonlogarithmic terms are not yet fully known
O(aS

5mb) and beyond, so that we are unable to incorpor
them unambiguously. Furthermore, if a resummation of
IR logs stabilizes the theoretical predictions substantially,
would like to understand the physical meaning behind it,
why the resummation is important. A hint to these questio
was suggested in@22#: it shows thatO(LQCD

3 ) renormalons
will be suppressed if we incorporate the offshellness of
quarks, which acts as an IR cutoff in the temporal dimens
This applies to theO(LQCD

3 ) renormalons contained inWNA

and VQCD ~and their higher-order corrections!, and they are
closely related to the IR logs and their resummation.
suspect that further investigations of all these problems m
be a way to clarify and solve the problem of the opera
WNA we face here.

VI. THE SPECTRUM

In this section we compare the whole bottomonium sp
trum as determined experimentally with various theoreti
predictions. We list the energy levels numerically in Table
and show the spectrum in Fig. 10. The levels were calcula
according to the framework explained in Sec. II, using
input parameteraS

(5)(MZ)50.1181 and including the effect
of dU anddWNA . We employed the scale choicesm51, 2,
3, 4 and 5 GeV.

In this section we usem̄b54.234 GeV instead ofm̄b
54.190 GeV to make the prediction for the 1S state
coincide with the experimental value for our favored sc
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of11 m53 GeV. We consider this different choice ofm̄b a
more natural way to achieve coincidence with the expe
mental value than a simple shift of the whole spectrum;
numerical difference between these two prescriptions is
tually very minor.

In Fig. 10 we compare our results to the spectrum o
tained from the experimental data~‘‘Exp’’ !, the predictions
of the fixed-order perturbative expansions@‘‘Brambilla-
Sumino-Vairo’’ ~BSV!#,12 and the result of@1# as a typical
prediction of recent phenomenological models~‘‘Eichten-
Quigg’’!.

One can verify the conclusions of our analysis in the p
vious two sections: The fine splittings and theS-P splittings
are larger than those of the fixed-order results for then52
states, whereas they are of similar magnitude to the fix
order results for then53 states. The scale dependence of o
predictions originates mostly from the scale dependence
the operatorWNA1dWNA ; cf. the discussion in the last sec
tion. Only the gross level spacings between adjacentn’s are
affected visibly by changes ofm between 2–5 GeV, wherea
also theS-P splittings vary visibly for a smallerm between
1–2 GeV. The size of this variation is very large consideri
that the scale dependence is formally anO(1/c3)
5O(aS

5mb) effect. The level spacings between consecut
n’s as well as theS-P splittings increase for smallerm. We
regard the large scale dependence generated byWNA and its
higher-order corrections as the largest theoretical uncerta
of our prediction.

Let us note the effects of the operatorWNA or WNA
1dWNA in particular: the level spacings between conse
tive n’s are increased, while theS-P splittings are reduced
The reason can be understood as follows. The oper
WNA(1dWNA) generates an attractive potential proportion
to 1/r 2 ~with a logarithmic correction! which is particularly
strong at short distances. Hence, those states which

11The change ofm̄b by this adjustment does not alter the qualit
tive features of the predictions for the fine splittings and theS-P
splittings discussed in previous sections.

12We follow the scheme and the scale-fixing condition A of Se
IV B of @3#, except that we use the numerical solution to t
renormalization-group equation for the strong coupling consta
The results are obtained for the input parametersaS

(5)(MZ)
50.1181 and 0.1161; the prediction with the latter input agr
better with the experimental data.
4-11
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TABLE IX. Energy levels for all states includingEc
(0) , U1dU, WA , andWNA1dWNA . The parameters used areaS

(5)(MZ)50.1181 and

m̄b54.234 GeV; this choice ofm̄b is explained in the text.

m 1S 1P0 1P1 1P2 2S 2P0 2P1 2P2 3S

1.0 9.369 9.818 9.840 9.856 9.982 10.182 10.194 10.203 10.28
2.0 9.424 9.894 9.918 9.936 10.014 10.231 10.245 10.256 10.30
3.0 9.460 9.915 9.938 9.956 10.032 10.246 10.260 10.270 10.31
4.0 9.481 9.927 9.949 9.966 10.043 10.254 10.267 10.277 10.32
5.0 9.494 9.934 9.955 9.972 10.050 10.259 10.271 10.281 10.32

Expt. 9.460 9.860 9.893 9.913 10.023 10.232 10.255 10.268 10.35
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larger wave functions close to the origin acquire larger bi
ing energies. Since the states with lowern have larger am-
plitude close to the origin and therefore acquire larger bi
ing energies, the level spacings between the adjacentn’s
become wider. Since theS states acquire larger binding en
ergies than theP states, theS-P splittings becomes narrowe

Generally, our prediction of the spectrum has a be
agreement with the experimental data than the fixed-o
results. The agreement seems to be better for a larger s
choice, which appears reasonable, since the natural sca
the operatorWNA1dWNA would be large.~The scale depen
dences due to other effects are much smaller.! The agreemen
seems to be optimal for a scale choicem.3 –4 GeV. We
also examined our predictions for different values of the
put aS

(5)(MZ) within the present world-average value
0.118160.0020 @25#. We find that generally all the leve
spacings and splittings become larger for largeraS

(5)(MZ),
since the binding energy increases. The widening of the le
spacings, however, can be compensated largely by choo
a larger value form. The spectrum of the phenomenologic

FIG. 10. Comparison of the energy levels obtained with diff
ent formalisms. The columns labelledm51 throughm55 show

our results, where nowaS
(5)(MZ)50.1181 andm̄b54.234 GeV

have been used to make the 1S state coincide with experiment fo
m53 GeV. The columns form51, 2, 4 and 5 GeV have bee
shifted to achieve this coincidence. ‘‘Exp’’ shows the experimen
values and ‘‘Eichten-Quigg’’ those obtained in@1#. Finally, ‘‘BSV’’
corresponds to the formalism of@3#; the two columns represen
choices ofas

(5)(MZ)50.1161 and 0.1181, respectively.
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model still has a better agreement with the experimen
data, since it includes more parameters which can be
justed.

In general one should carefully take into account theo
ical uncertainties when comparing the whole spectrum w
the experimental data. Based on the renormalon argum
each energy level has~at least! an uncertainty of order
LQCD

3 r 2, where r should be taken as a typical size of th
quarkonium state. Theoretical uncertainties contained
Eimp(r ) in the regionr ,r IR can be represented typically b
these renormalon estimates@4,5#. Reference@3# estimated the
uncertainties to be6(5 –30) MeV for the 1S state,
6(20–130) MeV for then52 states, and6(40–220) MeV
for the n53 states. On the other hand, the level spacin
~splittings! have smaller theoretical uncertainties since th
theoretical uncertainties cancel, at least partly, as we
cussed in the previous two sections.

Let us estimate the errors of our prediction from oth
sources. In the left part of Fig. 11 we show the effects o
variation of theb-quark pole mass by6300 MeV from the
value listed in Table I.~For the error estimates we set th
scale tom53 GeV.! The states with principal quantum num

-

l

FIG. 11. Analysis of various uncertainties: In the left part of t
diagram we show the effect of a shift of6300 MeV of the pole

massmb while keeping the MS̄massm̄b that enters the potentia
Eimp(r ) constant. To make the 1S states concide, we have shifte
the spectrum formb2300 MeV (mb1300 MeV) down ~up! by
about 20 MeV. The right part shows the effect of changing the sl
of the IR part ofEimp(r ) by a factor of 1/2~2!. ~The definition ofC1

is given in Sec. II B.! The effect of this change on the 1S state is
negligible, so that the spectra did not have to be shifted.
4-12
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bers n51 and 2 are shifted up~down! by about 20 MeV
when the pole mass is shifted down~up! by 300 MeV; for the
states with principal quantum numbern53 this variation is
about615 MeV. Consequently if we compensate the over
shift such that the 1S level agrees with the experiment
value, only then53 levels vary by about65 MeV.

In the right part of Fig. 11 we also show the effect of
variation of the long-distance part of the potentialEimp(r ) in
the zeroth-order Schro¨dinger equation. We vary the tange
of the linear potential atr .r IR by factors of 2 and 1/2.~The
first derivative of the potential then becomes discontinu
at r 5r IR .) The variations of the energy levels are of ord
6(2 –5) MeV for the 2P states and615 MeV for the 3S
state, while they are smaller than 0.1 MeV~and therefore not
visible in Fig. 11! for the lower states. This can be eas
understood because only the states with principal quan
number n53 have a wave function that extends to lar
enough distances to probe the potential in this region.

For the sake of comparison, we show in Fig. 12 the p
dictions for the bottomonium spectrum when we set
WNA1dWNA to 0 artificially @in this figure we use
aS

(5)(MZ)50.1201 andm̄b54.151 GeV]. We see that th
scale dependence reduces~as expected! and there is a much
better agreement with the experimental data. Phenom
logically this may be taken as an indication that the con
butions ofWNA should be suppressed by some mechanis

VII. CONCLUSIONS

We have examined the bottomonium spectrum within
specific framework based on perturbative QCD. The com
tation of the individual energy levels includes all the effe
up toO(aS

4mb) and that of the fine splittings contains all th
effects up toO(aS

5mb). We have also included some impo
tant higher-order corrections to the quarkonium wave fu

FIG. 12. For comparison we show the bottomonium spectr
with the WNA1dWNA term artificially set to 0 andaS

(5)(MZ)

50.1201 andm̄b54.151 GeV; otherwise the conventions are as
Fig. 10. The scale dependence is decreased and the agreemen
the experimental spectrum is strongly improved with respect to
10, indicating a phenomenological preference for a suppres
mechanism forWNA .
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tions and the energy levels through our use ofEimp(r ),
which is the characterizing feature of our analysis. We ha
eliminated the scale dependence fromEimp(r ) by fixing a
specific scheme and we have discussed scale depede
originating from the other terms of the Hamiltonian. Th
agreement of the fine splittings among the 1Pj states be-
tween the theoretical prediction and the experimental d
improved drastically as compared to the fixed-order pred
tion of @2,3#. We find that the centering of the wave function
towards the origin as compared to the Coulomb wave fu
tions, due to the strong attractive force in the intermedia
distance region, strongly enhances the fine splittings. We
find that, in accord with a naive expectation, the natu
scales of the fine splittings are larger than those of the bo
states themselves; the latter were used in the analyse
@2,3#. The predictions for the fine splittings are stable agai
the variation of the scalem and are in reasonable agreeme
with the experimental data both for the 1Pj and 2Pj states.
We also examined theS-P level splittings. The agreemen
with the experimental data has improved as compared to
fixed-order results, but the predictions are still somew
smaller than the experimental values. The predictions
these splittings are stable against the variation ofm between
2–5 GeV but become unstable for lower scales between
GeV. Natural scales of theS-P splittings are also found to be
larger than those of the bound states. On the other hand
predictions of the level spacings between the adjacentn’s
depend rather strongly on the scalem. This stems from the
large scale dependence of the operatorWNA and must be
regarded as a major source of uncertainties in our pre
tions. We are motivated to choose a relatively large value
the scalem in view of the dominance of short-distance co
tributions to^cuWNAuc&. ~Other effects are much less sca
dependent.! If we choosem.3 –4 GeV, and foraS

(5)(MZ)

50.1181 andm̄b54.234 GeV, the agreement between o
prediction and the experimental data for the whole bottom
nium spectrum is fairly good, and is considerably better th
the agreement between the fixed-order prediction and the
perimental data. There seem to be some indications, h
ever, that the contribution of the operatorWNA reduces the
stablity of the theoretical prediction and at the same ti
worsens the agreement between the prediction and the
perimental data. At the present state we consider our pre
tions to be consistent with the experimental data within t
oretical uncertainties.

Note added.After this paper was submitted, we receive
@34# which confirmed in vNRQCD framework the result o
pNRQCD @33#, and the disagreement we mentioned at
end of Sec. V has been resolved.
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APPENDIX

We derive a formula which is convenient for evaluatin
the expectation value ofWA @Eq. ~5!# with respect to the

with
.
n
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eigenstateuc& of H0
(imp) defined in Eq.~7!. We substitute the

following operator identities toWA :

1

r 3
r i r j pj pi5pW 2

1

r
2

LW 2

r 3
24pd (3)~rW !, ~A1!

pW 25mb@H0
(imp)2Eimp~r !#. ~A2!

Then one finds

WA52
1

4mb
@H0

(imp)2Eimp~r !#21
3pCFaS

mb
2

d (3)~rW !

2
CFaS

2mb
H 1

r
,H0

(imp)2Eimp~r !J 1
CFaS

2mb
2

LW 2

r 3
. ~A3!
s.

cl.

01400
Hence, the expectation value can be written as

^cuWAuc&52
1

4mb
^@Ec

(0)2Eimp~r !#2&

2
CFaS

mb
K Ec

(0)2Eimp~r !

r L 1
CFaS

2mb
2

l ~ l 11!

3K 1

r 3L 1
3pCFaS

mb
2

uc~0W !u2. ~A4!

All quantities on the right-hand side can be evaluated fr
the radial wave function and the energy eigenvalue, wh
are obtained by solving the Schro¨dinger equation numeri-
cally.
s.

n,
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471 ~1997!; Y. Schröder, Phys. Lett. B447, 321 ~1999!.
@13# A. Pineda and J. Yndurain, Phys. Rev. D58, 094022~1998!.
@14# A. Hoang and T. Teubner, Phys. Rev. D58, 114023~1998!; K.

Melnikov and A. Yelkhovsky, Nucl. Phys.B528, 59 ~1998!.
@15# A. Manohar and I. Stewart, Phys. Rev. D62, 074015~2000!.
@16# B. Kniehl, A. Penin, V. Smirnov, and M. Steinhauser, Nu

Phys.B635, 357 ~2002!.
@17# S. Gupta, S. Radford, and W. Repko, Phys. Rev. D26, 3305

~1982!.
@18# B. Kniehl, A. Penin, V. Smirnov, and M. Steinhauser, Phy
Rev. D65, 091503~R! ~2002!.

@19# K. Chetyrkin and M. Steinhauser, Phys. Rev. Lett.83, 4001
~1999!; Nucl. Phys.B573, 617 ~2000!.

@20# K. Melnikov and T.V. Ritbergen, Phys. Lett. B482, 99 ~2000!.
@21# A. Hoang, hep-ph/0008102.
@22# Y. Kiyo and Y. Sumino, Phys. Lett. B535, 145 ~2002!.
@23# A. Hoang, Z. Ligeti, and A. Manohar, Phys. Rev. Lett.82, 277

~1999!; Phys. Rev. D59, 074017~1999!.
@24# S. Larin, T.v. Ritbergen, and J. Vermaseren, Nucl. Phys.B438,

278 ~1995!.
@25# Particle Data Group, D.E. Groomet al., Eur. Phys. J. C15, 1

~2000!.
@26# D. Gromes, Z. Phys. C26, 401 ~1984!.
@27# E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, and T. Ya

Phys. Rev. D17, 3090 ~1978!; 21, 313~E! ~1980!; 21, 203
~1980!.

@28# T. Nagano, A. Ota, and Y. Sumino, Phys. Rev. D60, 114014
~1999!.

@29# N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Phys. Lett.
470, 215 ~1999!; B. Kniehl and A. Penin, Nucl. Phys.B563,
200 ~1999!; B577, 197 ~2000!.

@30# A. Hoang, A. Manohar, and I. Stewart, Phys. Rev. D64,
014033~2001!.

@31# A. Manohar and I. Stewart, Phys. Rev. D63, 054004~2001!.
@32# A. Hoang, A. Manohar, I. Stewart, and T. Teubner, Phys. R

Lett. 86, 1951~2001!; Phys. Rev. D65, 014014~2002!.
@33# A. Pineda, Phys. Rev. D65, 074007~2002!.
@34# A. Hoang and I. Stewart, hep-ph/0209340.
4-14


