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Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably
well within the nonrelativistic bound state theory based on perturbative QCD. In that calculation, however, the
fine splittings and th&—P level splittings are predicted to be considerably narrower than the corresponding
experimental values. We investigate the bottomonium spectrum within a specific framework based on pertur-
bative QCD, which incorporates all the corrections upa(cngmb) and O(aémb), respectively, in the com-
putations of the fine splittings and ti%e-P splittings. We find that the agreement with the experimental data for
the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as
compared to the Coulomb wave functions. The agreement @&-Hresplittings with the experimental data also
becomes better. We find that natural scales of the fine splittings ariHResplittings are larger than those of
the bound states themselves. On the other hand, the predictions of the level spacings between consecutive
principal quantum numbers depend rather strongly on the gcafehe operator:C, /(myr?). The agreement
of the whole spectrum with the experimental data is much better than the previous predictionguwhen
=3-4 GeV forag(M;)=0.1181. There seems to be a phenomenological preference for some suppression
mechanism for the above operator.

DOI: 10.1103/PhysRevD.67.014004 PACS nuniber12.38.Bx

I. INTRODUCTION gion [6,7], all these calculations are consistent with one an-
other. See als[8], which made a direct comparison of lattice
For a long time most successful theoretical approaches taesults and perturbative predictions of the QCD potential in a
study the heavy quarkonium spectra have been those baseshormalon-subtracted scheme and found the same consis-
on various phenomenological potential models. These modeéncy.
approaches have been capable not only of reproducing the The key concept which led to these new results from per-
charmonium and bottomonium spectra to a high accuracyturbative QCD is the following. Conventionally, theoretical
but also of explaining various other properties of heavycalculations of the energy levels of a nonrelativistic quark-
quarkonia such as their transition rates and decay rateantiquark bound state closely followed that of a QED bound
Through this success, these phenomenological models hageate such as positronium: it starts from the natural picture
established, essentially, that the heavy quarkonium states c#mat, when an electron and a positron are at rest and far apart
be described well as nonrelativistic bound state systems; séeom each other, they tend to be free particles and the total
e.g.[1] for one of the most recent analyses. On the otheenergy of the system is given by the sum of the energies of
hand, the problem of the phenomenological approaches i$e two particlegpole masses as the electron and positron
that it is difficult to improve the theoretical predictions sys- approach each other, the energy of the system decreases due
tematically, and that it is difficult to relate the parameters ofto the negative potential energy, so that the total energy of
the models to the fundamental theory. the bound state is given as the sum of the pole masses minus
Recently there has been new progress in explaining theste binding energy. When the calculation along the same line
heavy quarkonium spectra within the framework of nonrelawas applied to the quark-antiquark system, however, the per-
tivistic bound state theory based on perturbative QCD. It hasurbative expansion of the bound state energy turned out to
been shown that, by incorporating the cancellation ofbe poorly convergent, due to the contributions from infrared
O(Aqcp) renormalons contained in the pole mass and th€IR) gluons with wavelengths of OrdéfééD, We can regard
static QCD potential, the gross structure of the bottomoniumhis as reflecting the invalidity of the free quark picture when
spectrum is reproduced reasonably well by the perturbativéhe quark and antiquark are far apart from each other. On the
computation of the spectrum up @ 1/c?) = O(aémb) [2,3]. other hand, intuitively we expect that there should be a way
Furthermore, it has been shown that the static QCD potentiatp calculate the bound state energy in which the contributions
calculated in a series expansiondg up to O(ag), agrees of IR gluons can be mostly eliminated. This is because when
well with typical phenomenological potentials in the regionthe boundstate size is sufficiently smaller thA@éD, IR
relevant to bottomonium spectroscopy, once €A ocp) gluons cannot resolve the color charges of the constituent
renormalon contained in the QCD potential is cancelledparticles, so that they decouple from this color-singlet sys-
against that contained in thequark pole mas§4,5]. Since  tem. Indeed this idea was theoretically validated in the lan-
the static QCD potential calculated by lattice simulations isguage of renormalons and their cancellatiétiL0]. As a re-
consistent with the phenomenological potentials in this result, the convergence of the perturbative expansion improved
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dramatically, extending the predictive power of perturbativebottomonium spectrum given by our prediction, by other the-
QCD beyond what could be achieved before. oretical predictions and by the experimental data. Conclud-

Nevertheless, there remain some problems regarding thigg remarks are given in Sec. VIl. We derive a formula use-
above prediction of the bottomonium spectrum from perturful for our analysis in the Appendix.
bative QCD. Among them, especially interesting is the prob-
lem that the fine structure in theP] levels as well as the Il. FRAMEWORK OF CALCULATION
splittings between theQand 1P; states are predicted to be
considerably narrower than the corresponding experimental
values. One may think that the level of agreement of the We first recall the nonrelativistic Hamiltonian of a quark
theoretical prediction with the experimental data is still con-and antiquark pair given in the series expansion mup to
sistent within errors: according to an estimate based on next2(1/c?) which is determined from perturbative QCISee
to-leading order renormalons, each energy level has a the§-9- [11-14.) Considering an application to the bottomo-
retical uncertainty of ordeA 3.p-a® (a is the typical size of UM states, we assume_the_ quiidnt}quark to be theb
the corresponding bound statehich may be comparable in quark (o quark. The Hamiltonian is given by
size 'to the '8.1Pj 'splittings and may be much larger tha}n H=Ho+ U+ Wt Wy, 1)
the fine splittings in the B; levels; compare the error esti-
mate in[3]. One should note, however, that if we calculate\ye choose the zeroth-order part of the Hamiltonian to be
these level splittings instead of the individual energy levels,
the (’)(A%CD) renormalons should get largely cancelled when P2
we take the differences of the energy levels. Hence, the the- Ho=2my+ —+Voep(r), (2
oretical uncertainties of the splittings can be much smaller M,
than those of the individual energy levels, and the disagree- )
ment between the theoretical prediction and the experimentd/€ré My is the pole mass of the quarl;), andVocp(r)
data may be quite serious. It is important to clarify whether jtde€notes the static QCD potential up @{«y). This choice
is possible to resolve these disagreements in the fine splifliffers from the usual zeroth-order Hamiltonian of the 1/
tings and thes-P splittings within the context of perturbative €xpansion, sincél, also includes the(a8) =O(1/c) and
QCD, e.g. by including higher-order corrections, or whetherO(a2) = O(1/c?) terms of the QCD potential. Other opera-
we need to take into account specific nonperturbative contritors of Eq.(1) are treated as perturbationsHg, all of which
butions for this purpose. are O(1/c?) in the usual order counting in d/expansion.

In this paper we investigate this problem of the fine split-U + W, constitutes the(1/c?) part of the Breit Hamiltonian
tings and theS-P splittings in the bottomonium spectrum known from QED boundstate theory, where the spin-—
within a specific framework based on perturbative QCD. Wedependent operator is given by
note that these splittings have been successfully reproduced

A. Hamiltonian up to ©(1/c?)

by the phenomenological potential models, and that a con- oo (S-1)2 _
nection between the static QCD potential and phenomeno- U=U sL-S+Ug §*—=3———|+U(25*-3)&%(r),
logical potentials has been elucidated[#5]. In order to r 3
take advantage of these results, we develop a framework &)
which enables detailed comparison of the predictions of the ") ") ")
phenomenological models and of perturbative QCD. We also _3CFas _ Crag _ZWCFCVS
incorp_orate some of the higher-order c_orrections to the non- Ls™ 2m§r3 ' 2m§r3 ' 0~ 3mr2)
relativistic Hamiltonian of the quark-antiquark system which (4)

have not been included in the analyg.
The basic theoretical ingredients of our analysis are agnq the spin-independent operator is given by

follows: (1) We take into account the cancellation of the

O(Aqcp) leading renormalons by reexpressing tirguark

pole mass in terms of the modified minimal subtraction 11

scheme (M$ mass.(2) We take a specific scheme for the

< E(r) —————>

T

perturbative expansion such that all the corrections up to % 19

O(admp) and O(a3my) are incorporated in the calculation £ N

of the S-P splittings and the fine splittings, respectively. Fur- 5@ 9 e;n‘c(erz;olation
thermore, some of the higher-order corrections, which appear &

to be important for these observables, are incorporated. .y A motential
The organization of the paper is as follows. In Sec. Il we 8 “improved potentt

present the framework of our calculation. We examine the rov = 0.5 Gev! rin |= 4.5 Gev!

energy levels and the wave functions of our zeroth-order

- S . . - . 0 1 2 3 4 5 6
Hamiltonian in Sec. Ill. The analysis of the fine splittings is r [Gev]
given in Sec. IV and that of th8-P level splittings in Sec. V.
Then, in Sec. VI, we compare the whole structure of the FIG. 1. Construction of the improved potential.
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FIG. 2. EP(r)=2m,
+Voco(r) up to O(ag) for N
=1, 2, 3 wheny is fixed inde-
pendently ofr: (&) u=1 GeV and
(b) =2 GeV. The scaleu that
provides the best convergence of
the perturbative series depends on

4 r.

r(devy

(i) At intermediate distances,yy<r<r, where the
bulk of the bottomonium wave functions are locateg,(r)

is identified with the total energy of the statib system
EFOE(r)u:MZ(r):[2mb+VQCD(r)]|M:M2(r) computed in[5].

X

. 1
2
e 2 ifib p,) ©) ER(r) is defined in Eq(5) of that paper and depends on the

parameter?a(s3)(,u), o, Hb and E: these are, respectively,
the strong coupling constant defined in the Bt$heme with
CACF(ag]'))Z 3 active flavors, the renormalization scale, thquark MS

Wya=— — Y, (6) mass renormalized at the-quark MS mass scale and the
2myr same for thec quark. Theb-quark pole massn, is reex-

represents the operator characteristic to the non-AbeliaRreSsed in terms afy,, such that th&(A ocp) renormalons
gauge theory. In this paper, unless the argument is specifieare cancelled ifE(r). In identifying Ejy,(r) with Ege(r),
explicitly, a(sn') denotes the strong coupling constant renor-the scaleu is determined as a function ofaccording to the

malized at the renormalization scale defined in the MS second prescriptior] = u,(r), Eq. (14)] in [S]: since
scheme wit, active flavors, i.ealV=al"(u); Cr=4/3 Ew(r) is lessu dependent and its series expansion con-
verges better if we choose a larger value forwhenr is
esmaller, and if we choose a smaller value forwhenr is
larger, we consider our choice pf to give a more accurate

prediction for EZ(r) than choosing some fixed
B. Improved potential (r-independentvalue of u; see Figs. 2,3. The-quark MS
In our analysis of the bottomonium spectrum and Wavemas_S Etéken asle= 1'_243 GeV[2]. We will ex_plain how
functions, we use an improved “potentia,,(r) instead of ~ We fix my in our analysis below. For other details, we follow
2m,+Vocp(r) in the zeroth-order Hamiltoniaid,. This  the convention of Secs. IIA and 11 B ¢5].

Eimp(r) is constructed in the following way: We divide the (i) At short distances,<ryy, we use a renormalization-
range ofr into three regions by introducing ultraviol@gV) group improved QCD potential. It is obtained by integrating

On the other hand,

and C,=3 are the color factord; and S are, respectively,
the orbital-angular momentum and the total spin of th

quark-antiquark pair. For thieb system,n,=4.

and infrared(IR) distance scales,,, andr g, see Fig. 1. the three-loop renormalization-group improved interquark
force F(r)=—dVgcp(r)/dr, following the method of Sec.
10.5mm IV of [4]. There, it was shown that the QCD potential be-
:".‘ r=3GeV! comes more convergent if we improve the interquark force
= R (AN ~/ ___________________________ by means of the renormalization group and integrate it over
@ S il PR r, rather than directly improving the QCD potential by the
CER-H AN e oY )
= \ renormalization group The initial value for the renormaliza-
88 of|" r=2QGeV! tion group evolution of-(r) and the constant part &im(r)
S \ . _1 are determined such th&,,(r) becomes continuous at
8.5 r=1GeV =ryy Up to the first derivative.
(iii ) At long distancesy>r r, we use a linear potential,
0.6 0.8 1 1.2 1.4 1.6 1.8 2 Eimp(r) =Cyr+C,, whereC, and C, are determined such
1 [GeV]

FIG. 3. Dependence (ﬁ{’oﬁ’(r) on the scaleu for three different IHere, the renormalization-group improvement\fcp(r) refers
values ofr=1,2,3 GeV(solid, dashed, dash-dotted, respectiyely to that using thé/-scheme beta functiofihe second paper ¢12])
For larger, the flat region(less u-dependent regionmoves to  and is different from the renormalization-group improvement in
smaller scales. [30-33 (resummation of the next-to-next-to-leading logarithms
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that Eim,(r) becomes continuous at=rz up to the first CF(a(S”I))Z (m) (Ce—2Ch) Bo
derivative. OWna= 5 { 7 “ ?]
The main part of the improved potentij,(r) is that Myl m
given in the intermediate-distance regionh Indeed this part c (n|))2 (n,)
of the potential dictates the main features of the results of our _ (Crag [B ( i a (12)
analysis. According to its construction, howevef,,(r) as 4mpyr? 0 4’
defined in the regiorii) becomes unstable and unreliable at
r=<1/my andr=1/Aqcp. This is the reason why we continue where
it to other definitions at short and long distances. The short-
and intermediate-distance paftsand(ii) are determined by €, =log(ur)+ ve, (13
perturbative QCD, whereas the long-distance fiatis not.
We will show that the shape d&;(r) in the long-distance €m=log(myr)+ ve, (14
region (iii) does not affect the results of our analysis signifi-
cantly. It should be noted that, with our definition, tlhe :1_10 _ ET n (15)
dependence d;y(r) has been completely eliminated. The 0" 3A 3R
w dependences mentioned later in this article are those which
stem from the other terms of the Hamiltonié&see below 31 20
We urge the reader to consui,5] for the physics back- 1= 5 Cam g TR, (16
ground and detailed features &, (r) as defined in the
regions (i) and (ii). In our analysis below, we saty 65
=0.5 GeV ! andrjg=4.5 GeV . by= (18 31092 |CeCa— 9C FTRN
C. Perturbative expansion _ (g—+ A—llog > Ci-i— 4_9CATRnI . (17)
We solve the nonrelativistic Schiimger equation numeri- 36 3 36

cally with the improved potential, ve=0.5771 ... is theEuler constantTg=1/2. The spin-

_ _ p2 dependent operatoU, g and SU 5 were derived ir[15,16].
HE™ )y =ED g, HE™=—+Ejne(r), (7)  (Earlier incomplete results can be found[it7,11.) We de-
M rived SWy 4 from the result 0f 18] in the following way: We
discard the logarithm originating from the IR divergence as-
and determine the zeroth-order energy |eﬁgi) and wave sociated with the energy scale. This gives the first term of
function| ) of a quarkonium state. We treldt W, andWy Eqg. (12. We have to take into account the contributions

as perturbations and calculate the perturbative corrections dhich  come from the unitary transformationH

the energy level by =e*H’e %, whereH’ is the Hamiltonian of16] and
(ny) > >
I 7Crac " (K) 2p-k R
AE = (YU + Wit W) ). ® (R TS (1+ P ) -
NG k2
We will also examine corrections induced by some of the (18
3 .
O(1/c”) operators: The second term of Eq2) is generated by this unitary
transformation. We note that the nonlogarithmic part of
o (§-1)2 SWya cannot be determined unambiguously, since it mixes
SU=6U gL-S+6Ug S*—3 > | (9)  with other O(1/c®) operators through IR divergence. Our
r definition merely represents one possible scheme. Only when

we add all the contributions to the spectrum(tL/c?), the
sum is free from IR divergence and can be defined unam-

(ny) (n|)
SU, = 3Cras /80(€ —1) biguously. Since at present we do not know the full form of
LS om@rs the Hamiltonian up tO(1/c%), this problem cannot be cir-
cumvented in any case.
2 Cal €m > + = 2 C > =T 10
§ A 24 3 F 9 Rnl ’ ( )
2The operator representation Xfreads
") ") Cra () (nl)
Crag' ! 4 X=— % 1+ir- +0O(
8US=——ZS3><—['BO(€ __) amyr | p)+ (ad).
2mgr m 3 3The O(l/c3)—0(as) nonlogarlthm|c term ofVqcp(r) is not
5 known yet, which would mix withNy 4 through IR divergence. All
3 A g o
C.l ¢ +Cee T 11 other O(1/c®) operators of the Hamiltonian have been identified in
A( mT36 " “F g R”'] D et 18]
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TABLE I. Dependence of the pole mass,(my,a{)(u), 1) on
the scaleu for a£)(M,)=0.1181 andn,=4.190 GeV.

PHYICAL REVIEW D 67, 014004 (2003

TABLE 1. Zeroth-order energieg(). The units are GeV. Un-
less otherwise stated, all tables and figures mge=4.190 GeV,

a®(M7)=0.1181 and the pole mass,(m,,a{’(u),u) as ex-

un (GeV) 1.0 2.0 3.0 4.0 5.0 plained in the text.
m, (Ge 5.458 5.131 5.027 4.969 4.930

b (GeV) n 1s 1P 28 2P 3S

) ) 1.0 9.476 9.877 9.986 10.186 10.247

We have to specify how we treat the pole magsin the 5 g 9.498 9.896 10.007 10.203 10.262
operatorg?/m,, U, Wy, Wya, 6U and 6Wya. We express 3.0 9.505 9.902 10.013 10.209 10.268
the pole massny, in terms of the MSmassm,, in the series 4.0 9.509 9.906 10.017 10.212 10.271
expansion ine{(w) up toO(a?d) using Eqs(2), (7) and(8) 5.0 9.512 9.908 10.020 10.214 10.272

of [5].% After that we can, in principle, reexpand these opera

tors in a(s4)(,u), since the pole mass enters the denominators .
and¢,.. There is, however, no known guiding principle how model analyses, and that eventually the bottomonium spec-

to organize these expansions, since such reexpansions canfigm may be reproduced with a good accuracy. Note that our

be carried out consistently with the expansiorsiifc. This zeroth-order gﬁlﬂgrkomum wave functions, which are deter-
o . bb, mined fromHy", include some of the higher-order correc-
is in contrast to the reexpansion OE.;(r)=2m,

hich h idi inciple by th llati tions in the usual order counting of thecléxpansion, since
*+Vocp(r), which has a guiding principle by the cancellation Eimp(r) includes theO(1/c) and O(1/c?) corrections to the

of O(AQCD) .renorm.alons, although the reexpansion is i“'static QCD potential. By the same token, the zeroth-order
deed inconsistent with thed £xpansion. Hence, we keep the energy levels are different from the Coulomb energy levels,

pole mass as a function ofi,, a&(x) andu and do not  and in particular they depend on the orbital angular momen-
reexpand the operatorpd/my, U, Wa, Wya, 8U, SWya); tum .

the values of the pole mass are shown in Table | correspond-
ing to «$)(M,)=0.1181 andm,=4.190 GeV. We will ex-
amine how the uncertainty of the pole mass of ordeyp
affects our predictions in Sec. VI.

Ill. ZEROTH-ORDER ENERGY LEVELS, WAVE
FUNCTIONS AND SCALES

We take the input for the st i tant We show numerical solutions to the zeroth-order Sehro
< take ne Input Tof the strong coupling constan asdinger equation(7). Here and hereafter we take the input
(M) and calculaterS) () for Epny(r) anda(u) ,
S z NG Imp nHas U/L) - yalue for the strong coupling constant to be the present world
for the other operators. We evolve the coupling by solving verage valuer’®(M,)=0.1181[25]. Through Secs. lll-V
the 3-loop renormalization-group equation numerically anda S

match it to the 4- and 3-flavor couplings successivelyVe Use the bottom quark M&assm,=4.190 GeV t)al@n
through the matching conditiof24].5 [Although the 4-loop  from [3]. We show the zeroth-order energy |e\_/5§0 in
running of the MScoupling constant is available, we con- Table Il. The squared radial wave.func_tlons multiplied by the
sider the 3-loop running more consistent in our analysisphase space factor are s_hown in Fig. 4. Both the energy
which incorporates corrections up to the 2-loop finite part Oflevels and the wave furlcuonst depend 9,” .the spa(@n!y)
Voeo(r).] through the pole mass p?/m, in the Schrdinger equation.
Our choice of the zeroth-order Hamiltonian and the wayThe energy level€(Y vary by about 10 MeV(20 MeV)
we organize the perturbative expansion is largely motivatedvhen u is varied from 2 to 5 Ge\(1 to 2 GeV). Nonethe-
by the success of phenomenological potential models. It€ss, if we take the difference of any of the two energy levels,
fact, the above organization of the perturbative expansioithe 4 dependences cancel mostly. Thedependences of the
follows, to a large extent, the approaches of phenomenologwave functions are fairly weak. .
cal model analyses, if we identify ow#{™ with the non- In [2,3] the scaleu= u,, for each quarkonium statey)
relativistic Hamiltonian, p2/m+Vendr), used in those Was fixed by minimizing theu dependence of each energy
analyses. SincEjy(r) agrees well with typical phenomeno- level calculated in a fixed-order perturbative expansion
logical potentials up to an additive constant, we expect thatMinimal-sensitivity prescription The scale fixed in this

we can make close comparisons with phenomenologicabay turns out to represent the physical size of the corre-
sponding quarkonium state fairly well. This was showhZh

by comparing the scalg, and the support function defined

“These formulas were derived originally [h9—21. by

SFor instance, if we organize the perturbative expansions of the
energy levels appropriately, renormalons contained in them are of
orderAéCD, whereas if one expands the levels ig,Irenormalons
become ordeAgCD and worsen the perturbative convergen22|.
This may be regarded as an explicit example of problems due to awhereR(r) is the radial part of the wave function for the
inconsistency betweendpower counting and renormalon cancel- state|). The support function represents the support in the
lations (beyond those controlled by expansior{23]). momentum-space integral in the calculation (dfe major

The matching scales are takenrag andm,, respectively. part of) the energy level. The Coulomb wave function, evalu-

fy(a)=0(m—q)— f:dffzmw(r)lzw'

ar (19
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=70.8 0.5
0.3
S o 1S 0.4 25 35
o 0.3 0.2
=o.4
< 02 0.1
§0.2 0.1 :
5;_ 0 0 0
1 2 3 i 01 2 3 4 5 & 0 3 i e 8
7 [GeV™! r[GeV™] r[GeV™']
— 0.4
= 0.6
o 05 1P 0.3 2P
= 0.4
0.3 0.2
o
5> 0.1
o
NL 0 0

2 3 4 5 0 2 4 1 6
r[GeV™Y] r[GeV™]

FIG. 4. r2|R,,,(r)|2 for different values ofu=1,2,3,4 and 5 GeV, wherR(r) denotes the radial part of the zeroth-order energy
eigenfunction. The area below each curve is normalized to unity. The one curve that visibly differs from the others corresponds to
=1 GeV. Note that the scales differ between the plots.

ated Withag‘)(,uw), was used to compute the support func-the charm mass effects and t@¥1/c) and O(1/c?) correc-
tion f,(q); the charm mass effects in loops were not takentions of Vocp(r) to the wave functions.

into account. Here we compare the support function com-
puted with our zeroth-order wave function and the scale
fixed in [3], both of which include the charm mass effects.
The resulting support functions for tt&states are shown in In this section we examine the fine splittings in the botto-
Fig. 5 and for theP states in Fig. 6. We see that with respectmonium spectrum within our framework and compare them
to the treatment inf2], the support functions are shifted with the experimental data as well as with previous theoret-
slightly towards higher momentum. This is reasonable, sincécal predictions in the literature. Within perturbative QCD, it
the wave functions calculated here are peaked closer to the expected that in principle the fine splittings can be com-
origin in coordinate space than the Coulomb wave functionputed much more accurately than the individual energy lev-
(see e.g. Fig. 7 below Since the scaleg., are located els. This is because the potentials which contain order
within the IR “tails” of the corresponding support functions A3c0f2 renormalongthe static QCD potential and/y,) do
f,(q), we confirm that the above interpretaion of the not induce the fine splittings, so that these renormalons can-
minimal-sensitivity scaleu,, is valid also when we include cel in the computation of the fine splittings.

The fine splittings(or fine structurg are the level split-
tings among the states with the same principal quantum num-
ber n, orbital-angular momenturh>0 and spins but with
different total angular momentuim Experimentally, the fine

IV. FINE SPLITTINGS

T . . T
\ U3s Haos His

T " .
\ Mep HiP

fop

FIG. 5. Support functions for th&states. The solid curves show 0
the support functions as defined in E§9); for comparison of the
relevant scalesag“)(u) is also plotted(dashed curve Since the
analysis that we advocate in this work does not attribute scales to
the individual states, the scales indicated by the dotted lines are FIG. 6. Support functions for th® states. Notations are the
taken from[3], Table II. same as in Fig. 5.
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TABLE IIl. Expectation valuegin MeV) of the operatordJ, g
0.6 A _ QCD wave function (solid) andUg. The mass used in the operatorsrig=5.027 GeV corre-
E 0.5 Cornell wave function (dashed) sponding tomb 4.190 GeV andu=3 GeV.
o 0.4 Coulomb wave function (X |vc)  (bacol X[ ¥aco)  {Wcomell X | ¥comen
£0.3 as Uis Us  Ugs Us Us Us
g 0.2 “\-\\ 1p 0.360 2.08 —0.69 13.71 —457 16.07 —5.36
= ‘\\\ 0.468 595 —1.98 17.82 —-594 20.89 —6.96
0.1 S ,p 0360 062 —021 819 -273 1292 —431
oLt S T = 0.726 10.22 —3.41 16.52 —-5.51 26.06 —8.69
0 2 4 6 8 10
[GeV™]

FIG. 7. Comparison of QCDsolid), Cornell (dashed and Cou-

ample we compare our results with those of a phenomeno-
logical model with a Coulomb-plus-linear potenti@ornell

lomb (dash-dottel 1P-wave functions. For the Coulomb wave Potentiaj [27]:

function ag=0.36 has been used.

splittings have been observed among théP iL(n,l,s)
=(2,1,1)] and 2P;[(n,l,s)=(3,1,1)] states; we therefore
examine the predlctlons for these splittings.

In perturbative QCD the fine splittings are induced first at
O(admp) = 0O(1/c?) by the operatot:

AE{P=(yc|U] )

(Ceag")* Ds+3Xys
T e’ mbxl(l+1)(2|+1) (1>0), (20
where
De=— < §2_3(F~2§)2> _ 21(1+1)s(s+ 1)—3XLS_6XES,
r (21-1)(21+3)
(21)
N 1
Xes=(L-§)=3[i(j+D=1(I+1)=s(s+1)]. 22)

This is the fixed-order formula used fi@,3]. In this formula,
the Coulomb wave functionyc) is used to compute the
expectation value. The scale dependencaEﬁC) is large,
since it is proportional td a{"(u)]* three powers ofug
come from the Coulomb wave functidc| X | c), and one
power comes from the operattt. In [2,3] the scaleu is
fixed by the minimal-sensitivity prescription; cf. the previous
section.

In our approach, we calculate the fine splittings from

AEy=(y|(U+ 8U)|). As compared to the fixed-order for-

mula, some of the higher-order corrections are incorporated

through the wave functiofyy) and the operatosU.

In phenomenological approaches, one computes the fine

splittings using the same operatdbut using the wave func-
tions determined from phenomenological potentials:
AEEJpheno): ( ‘/’phenJU | ‘pphem}- (23

Some of the higher-order correctionsocconstrained by the

Gromes relatiorf26] have also been incorporated. As an ex-

~2
H gCorneII): r?’n_b +Veomelr), (24)
K r
VCorneI(r) == F + ; (25

with k=0.52 anda=2.34 GeV 1.

Table Il compares the expectation values of the operators
U, s and Ug with respect to the Coulomb wave function
|ic), our zeroth-order wave functiohy) and the Cornell
wave function|comen- The operatord), g and Ug induce
the fine splittings through X, U, s—DgUg, where
(Xrs,Dg)=(—2,—2),(—1,1),(1-1/5) for j=0,1,2, re-
spectively, andl(s)=(1,1). The fine splittings between ad-
jacent levels are therefotgd, s—3Ug for Py—Pg and 2J, ¢
+6Ug/5 for P,— P4. The values ofa(s“)(,u) in the operators
U, s andUg are taken as 0.36 and 0.468 for thB,istates
and as 0.36 and 0.726 for theP states. Also the same
values Ofa(4)(,u) are used for calculating the Coulomb wave
functions |¢c). The first value(0.36 corresponds to the
value used in the phenomenological analydik The latter
values (0.468 and 0.726are those for the R; and 2P,
states which were determined by the minimal-sensitivity pre-
scription in [3]. Taking into account the numerical values

— 0. 014
E 0.012 RN QCD wave function
j©3 /

% 0.01 , \/ Cornell wave function
> 0.008F ! Coulomb wave function
£ 0.006
o
~ 0.004
ES

0.002
Qe TTITIToem e
0 1 2 3 4
[Gev™Y]

FIG. 8. Comparison of the integrands f6tP|U g/1P); the
conventions are the same as in Figad=0.36 has been used both
in the operatolJ, 5 and in the determination of the Coulomb wave
function. Note that the scale of the horizontal axis is different from
Fig. 7.
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TABLE IV. Fine splittings computed frondy|U| ) and (U + 8U|4). u is in GeV; the splittings are

given in MeV.
1P4-1Pg 1P,-1P, 2P,-2P, 2P,-2P,
o as(pm) U U+6U U U+ U U U+6U U U+ 46U
1.0 0.454 33.3 22.3 26.7 16.2 20.7 12.9 16.6 9.0
2.0 0.301 22.7 24.5 18.2 18.8 13.7 14.4 11.0 10.9
3.0 0.253 19.3 23.3 15.4 18.1 115 13.6 9.2 10.5
4.0 0.228 17.5 22.3 14.0 17.4 104 13.0 8.3 10.1
5.0 0.212 16.3 215 13.0 16.8 9.7 12.6 7.7 9.7
Experiment 33 20 23 13

from the tableU, s andUs give roughly the same contribu-  and(y/comel U s s)| #comen is much smaller than the differ-

tion to thePl—Po Splitting, while thePz—Pl Splitting is domi- ence betwee(]lM U(LS,S)| ¢> and<¢c| U(LS,S)| ¢C>: the essen-

nated byU, s. tial difference between our potentig|.,,(r) and the Cornell
We see that the expectation valueslbfs andUs with  potential resides in the short-distance region.

respect to our wave functidny) and the Cornell wave func- We include also the contribution of ti@(1/c®) operator

tion |/comen are very much larger than the expectr;ttion val- 54 into our prediction of the fine splittings. As far as we

ues with respect to the Coulomb wave functiaf).” The o there is no other operator which contributes to the fine

reason for this behavior can be understood in the fonowmgsplittings atO(1/c?). Considering that our wave function
way: Since the potentialiny(r) andVcome(r) are steeper | ) includes all the next-to-leading orde©(1/c)] correc-
(i.e. the attractive forces are strongéran the Coulomb po- tions, our prediction for the fine splittings incorporates all the

tential in the intermediate-distance regfbthe wave func- ; .
tions are more centered towards the origin fg) and  Efects up to O(a2m,) [O(1/c) relative to the leading

|¥come than for [¢c); see Fig. 7 which compares the O(a‘émb) splittings]. Inclusion of t_he. operatobU reduces
squared radial wave functions multiplied by the phase spacte scale dependence of our prediction. In Table IV we com-

. pare the fine splittings calculated from the matrix elements
factoifor the PP states. Therefore the Wave' fgnct|o(n$z//> U] %) and from(y]U + 8U| ). The former depend op.
and(r|¥comen are enhanced close to the origin as compare

. ather strongly and are larger for smaljer sinceU is pro-
to the Coulomb wave function. The enhancement factors t“rBortionaI th(A)(M) 10\ve see that the scale dependence has
out to be large for thé-wave state.Since the expectation decreased cgnsidérably by the effectad. The scale de-
values ofU;s a_nd Us are determineo_l mostly by the short- ndences become minimal at=2 GeV for both P; and
distance behavior qf the wave funct|ons_,_ the_y are enhanc P; states. We may try to reproduce the splittings calculated
by large factors. Thls feature can be verified in E|g. 8, where ith (#|U+ 6U| ) at these scales by taking an appropriate
we compare the integrands when the expectation values A oice of the scales in the lower-order predictiéte split-
U, g are expressed as integrals ovethe main contributions

come from distances<2 GeV !. We should stress that the tings calculated with(¢|U|)). Then the scales become

. - . =2 GeV for both the P, and 2P; states. All these scales
enhancement of the wave functions originates mainly from ! !

the behavior of the potentials in the intermediate-distanc are larger than the scales chosen for the respective states in
region and not from the short-distance behavior. This can b 3], which are fixed by minimizing the scale dependence of

: e individual energy levels..{=1 GeV for the P, states
seen from the fact that the difference betwegfl( 5.5/ #) andu=0.8 GeV fo?}t/he p sléltes; see Fig. )cS'.I'histeature

is consistent with a naive expectation: we would expect that

the latter scales represent the typical scales of the binding
energies, or the inverse of the sizes of the bound st&igs

%), whereas the former scales represent those probed by the

8The cancellation 00(A ocp) renormalons suggests that this be- ope_ratorsiJ orU-+ 5.U’ which are larger because the _contrl-
havior can be understood naturally in terms of the QCD forcelutions to the matrix elements come from shorter distances

F(r)=—V(’9CD(r)=—CFaF(llr)/rz: F(r) becomes more attrac- (Fig. 8). .

tive than the Coulomb force asincreases due to the running of the 10 Our knowledge, so far there has been no systematic

F-scheme coupling constant(1/r) [4,8]. arg_ument on 'the order of renormalons contained in the fine
By way of example, if we squeeze the functiohsuch that it ~ SPlittings. Naively we expect that the largest renormalon

takes the same value at half distance, iie=(2r)", then the en-  contained in the calculation of the fine splittings would be of

hancement factor becomes'.2Thus, the enhancement factor is

larger for a largen. For theP-wave statesp=4, because 2 powers

come from the wave function squared and 2 powers come from the 1°The scale dependence of the wave functibss through the

phase space. pole mass is very weak; cf. Fig. 4.

This is not necessarily true for theP2states withag=0.726, but
this can be regarded as originating from another effect, which w
explain below. Namely, the values=0.726 is unrealistically large.
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TABLE V. S-P splittings. The splittings due to the differences in tions are more centered toward the origin if we solve the
EQ, U, U+6U, Wa, Wya and Wya+ 6Wy, are given for the  Schradinger equation WithE;mp(r) (which we believe to be
25-1P; and 35-2P, splittings. All values are in MeV 4 in GeV).  more realisti¢ rather than with the Coulomb potential. The
second point is that the natural scales to be chosen for evalu-

25-1Py ating the expectation values of the operatoare larger than
M EP) U U+sU  Wa  Wya WyatoWya  the natural scales for the individual energy levels: we con-
firmed this by incorporating the effects of the higher-order

1.0 1094 221 176 —-10.6 —66.5 25.6 torsU dth It litativel stent with
50 1107 150 151 -100 —-289 191 operatorsU, and the results are qualitatively consistent wi
a naive expectation. We find that the first effect overwhelm-
3.0 1111 127 137 —-98 —-204 —-20.3 . . . -
ing the second one resulted in the quite small splittings
40 114 115 128 -97 165 —194 among the P, states in[3]. On the other hand, the cancel-
5.0 111.5 10.7 122 —-9.7 —14.2 —18.3 9 ! ) !

lation of the first and the second effect resulted in reasonable
sizes of the fine splittings for theRZ states in that paper,
3S-2P, which, in the light of our present observations, may be re-

u EO U U+sU W, Wya  Wyat SWya garded as rather accidental.

1.0 60.7 12.6 9.2 -05 -—2938 18.8 V. S-P SPLITTINGS
2.0 59.4 8.3 8.2 -15 -130 —6.8 . . . -~
B B _ In this section we examine the splittings between the
3.0 59.0 7.0 7.5 1.9 9.2 8.2
Swave andP-wave states. In the Coulomb spectrum the
40 588 63 70 —21 - —75 -8l Swave and thé>-wave states with the same principal quan-
5.0 58.7 5.9 6.7 —2.2 —6.5 —-7.8 P pal q

tum numbem are degenerate. In perturbative QCD, the split-

tings are induced by ocp(r) starting fromO(1/c) as well as

by U, W, Wya at O(1/c?). Among these operators,

Vacp(r) (after cancelling the ordeA cp renormalon and

Wy 4 contain order/\f’?CDr2 renormalons. Therefore, the or-

der A%CDr2 renormalons do not cancel completely in the
perturbative computation of th&-P splittings. Namely, the

_ 1 dVQCDE. S (26) theoretical uncertainties of tie P splittings are expected to

2m§r dr be larger than those of the fine splittings.
In Table V we show thé&-P splittings of our zeroth-order

and the fact thatl Vocep(r)/dr contains arO(Adcpr) renor-  €nergy level€E!?, which contain the effects 8f gep(r) up
N - . 2 H H

malon. We may take this as an order of magnitude estimatl® O(1/c%). The contributions of the operatoks, W, and
of uncertainties of our present predictions for the fine split-Wna to the S-P splittings are also displayed in the same
tings. Compared with this error estimate, our predictions ofable. (A convenient formula for evaluating the expectation
the fine splittings calculated witfy{U + 5U|y) in Table IV values ofW, is given in the Appendi}.We expect that the
are in reasonable agreement with the experimental data. contributions of these operators would be smaller than the

We are now able to interpret the reasons why the finéff) splittings, since the operators af§1/c?), whereasEf/f’)
splittings of the energy levels computed[B] turned out to  contains theO(1/c) effects ofVocp(r). One sees that this
be quite small for the B; states but not so much for thé>2  expectation is satisfied in most cases, the only operator giv-
states. The first point to note is that large enhancement faéng a contribution comparable in magnitudeE@o) is Wya
tors are generated by the fact that the quarkonium wave funder relatively low scalesy=1 GeV, where this contribution

order A3cy/mj=1-10 MeV. This estimate is based on the
Gromes relatiof26] which tells us that a part of the operator
U, s is determined from the static QCD potential:

TABLE VI. S-P splittings. This table is similar to Table V, but here we add up the matrix elements of all
the operators contributing to tf&P splitting. For comparison, the first of the three columns for each level
splitting again gives the splitting due to the differenceEtﬁ). In the second column additionally, W, and
Wy have been taken into account and finally in the third colutbhand §Wy 4 are added.

25-1P, 35-2P,
“ EQ +(U,Wa Wy +(0U,6Wy0)  EP) +(UWa,Wya)  +(8U,6Wya)
1.0 109.4 54.4 141.9 60.7 42.9 88.2
2.0 110.7 86.8 96.8 59.4 53.2 59.3
3.0 111.1 93.6 94.8 59.0 54.9 56.5
4.0 1114 96.6 95.1 58.8 55.6 55.7
5.0 111.5 98.3 95.7 58.7 55.9 55.4
Expt. 130 100
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As long as we calculate th&-P splittings directly, as
done up to here, we see no indication of large theoretical
uncertainties. However, when we examine the individual en-
ergy levels, some indications of fairly large uncertainties
show up. Let us now investigate this feature.

Table VII shows the expectation values of the operators
U, U+ 68U, Wy, Wya, Wyat 6Wy, for all the states and
with u=3 GeV. We see that the expectation values\Gfs
andWyat+ 6Wy, for the 1S state are much larger than what

0 1 2 3 4 we would expect forO(1/c?) corrections. Moreover, for all
r[GeVY the states, the scale dependences of the expectation values of
_ _ Wyat 6Wy are large, and are comparable to thos&Vfa ;
FIG. 9. (Absolute value of theintegrand of the matrix elements see Table VIIL(A large part of these scale dependences can-

of Wy, (solid) and Wiy, (dashedifor the 1P; states. The graphs oo thes p splittings) The reason for the large scale de-
peak at rather small distances, indicating that the natural scales forendences is that the nonlogarithmic termayle is ver
the expectation values are larger than those for the bound state. P 9 NA y

large. Since at present we do not know the full form of the
becomes particularly large. In fact, the scale dependence dfamiltonian up toO(1/c®), we cannot draw a definitive con-
the contribution ofWy, is large, becaus&Vy, is propor-  clusion whether this problem of large scale dependence can
tional to &/(u)2, wheread) andW, are proportional only e remedied. o

to a(s4)(M)- We see that the scale dependence is reduced by The agre_ement of th&-P splltt_mgs between the theoret-
including the effect of the higher-order correctidVy,, ical predictions and_ the experimental qlata has improved
althoughW, s+ SWiy 4 is still unstable arounge=1 GeV. If somewhat from the flxed—lorder resuld. It is, howevgr, not

we choose a relatively large scale=3 GeV, the contribu- 25 good as one would naively expect. Namely the dlﬁe(ences
tions of the higher-order correctionsi) and Wy, become of the splittings between our predictioffer the scale choice

small and the scale dependences of S splittings are pn=2-5 GeV) and the experimental data are larger than the
relatively small; see Tables V and VI. contributions of the?(1/c?) operators. As stated in the In-

Furthermore, as shown in Fig. 9, the expectation value§r°dUCti°n' it is important to clarify whether the level of dis-
’ L - agreement is still consistent within perturbative uncertainties.
(| Wyal ) and{ | Wya+ Wy ) are dominated by short- s L= =
distance contributions. Therefore, following the same line of Tom the exam|nat|on_of the contributions 1o thellndlwdual
argument as in the previous section, we expect the r]aturg‘nergy levels, we conjecture that there would still be large

scales for these contributions to be larger than that for thi1€0retical uncertainties to the-P splittings, particularly
binding energy. rom the contributions ofVy, since at present we have no

- 3

If we compare our predictions for tH&P splittings with ~ SyStématic argument on how much of A 5cp) renorma-
the predictions of the fixed-order perturbative expansion ifons cancel in thes-P splittings. That is, we consider the
[3], there are two competing effects, just like what we foungcancellation of the large and scale dependent contributions
in the case of the fine splittings: these effects are the differffom Wia in the S-P splittings to be accidental, unless we
ence of the wave functions and the difference of the sqales find @ systematic argument in support of it. In this regard, we
in the operator. Consequently our predictions for $e consider the predictions for tf&-P splittings much less re-
splittings turn out to be larger for a smaller scale are liable than those for the fine splittings.

typically larger than the fixed-order predictions for the There are also other indications that the operatQra
2S-1P splittings, and are of similar magnitude to the fixed- becomes a source of instability of theoretical predictions. For

order predictions for the 32P splittings. Since, however, [nstance, Ref[28] addressesVy, to be the source of the
the S-P splittings are dominated by th@(1/c) correction large uncertainties of the cross sectionddie” —tt close to
from Vocp(r) [i.e. the contributions from thé(1/c?) opera- threshold. Referenci29] shows that IR logarithms, which
tors are only subleadifgthe differences from the fixed- are related to higher-order corrections W, and Vgcp,
order predictions are not as pronounced as in the case of tigenerate very large corrections to the bottomonium spectrum

fine splittings. at(’)(a‘rs’mb) and consequently cause a large uncertainty to it.
TABLE VII. Expectation values of the operatot$, U+ 68U, W,, Wya and Wya+ SWy, at the scale
w=3 GeV.
1S 1P, 1P, 1P, 2S 2P, 2P, 2P, 3s
U 13.2 —-257 —-64 9.0 6.3 —-154 —-3.8 54 3.2
U+6U 13.2 =307 -—-74 10.6 6.3 —-179 —-43 6.2 3.2
Wy —-221 -—-188 —188 -—-188 —286 —189 -—-189 -—189 -—20.8
Wya -79.1 -119 -119 -119 -323 -64 —-6.4 —-6.4 —15.6
Wyat SWya -130.2 -314 -—-314 -314 -—-51.7 -168 -—-168 -—-16.8 —25.0
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TABLE VIII. Expectation values of the operatots U+ 6U, W, , Wya andWya+ 6Wy, for the states
2S and 1P, for various scaleg. For the 25 state we leave out) + U becauseSU =0 for |=0.

2S 1P,
u U W, Wya  WyatoWya U U+6U W, Wya  Wyat oWya
1.0 11.0 -36.7 —104.8 ~73.0 -111 -65 —26.1 —38.3 ~-98.6
20 74 -306 456 —-63.0 -76 —-77 —205 -168 —44.0
30 63 -286 —323 ~-51.7 -64 -74 —188 —1109 ~31.4
40 57 —275 —262 —45.0 -58 -72 —178 -96 —25.7
50 53 -269 —226 —40.6 -54 -70 -172 -83 ~22.3

Furthermore, Refd30-32 resum the IR logs; it was found of!* ;, =3 GeV. We consider this different choice of, a
that Wy is reduced due to this resummation in the corre-more natural way to achieve coincidence with the experi-
sponding Wilson coefficients. Referen@2] claims that the  mental value than a simple shift of the whole spectrum; the
resummations lead to a stable theoretical prediction for th@ymerical difference between these two prescriptions is ac-
top threshold cross section. Referer{@3], however, re-  tyally very minor.
ported a result which disagrees with that[80,31]. _ In Fig. 10 we compare our results to the spectrum ob-
In this paper we discard the IR logs altogether, whichtained from the experimental datExp” ), the predictions
appear first atD(agmplog ag) in the spectrum. This is not of the fixed-order perturbative expansiofi$Brambilla-
because we consider them unimportant, but because we bgumino-Vairo” (BSV)],'2 and the result of1] as a typical
lieve that we are not yet in a position to treat this problemprediction of recent phenomenological modé¢igichten-
properly. The present treatment of the IR 1og$18,30-33  Quigg”).
seems to comprise following unsatisfactory aspects in the One can verify the conclusions of our analysis in the pre-
calculations of the heavy quarkonium spectrum and the toRious two sections: The fine splittings and B splittings
threshold cross sectiofbesides the disagreemgnSince  are larger than those of the fixed-order results forrke2
logas is not particularly large, it appears that the nonloga-states, whereas they are of similar magnitude to the fixed-
rithmic terms cannot be neglected in comparison to the IRorder results for the= 3 states. The scale dependence of our
logs. These nonlogarithmic terms are not yet fully known atpredictions originates mostly from the scale dependence of
O(a2my) and beyond, so that we are unable to incorporatehe operatoiVya+ 0Wya; cf. the discussion in the last sec-
them unambiguously. Furthermore, if a resummation of thaijon. Only the gross level spacings between adjacéntre
IR logs stabilizes the theoretical predictions substantially, wexffected visibly by changes gf between 2—5 GeV, whereas
would like to understand the physical meaning behind it, i.ealso theS-P splittings vary visibly for a smallep. between
why the resummation is important. A hint to these questionsi—2 GeV. The size of this variation is very large considering
was suggested if22]: it shows thatO(A%CD) renormalons that the scale dependence is formally af(1/c®)
will be suppressed if we incorporate the offshellness of the= O(a2m,) effect. The level spacings between consecutive
quarks, which acts as an IR cutoff in the temporal dimensionp’s as well as thes-P splittings increase for smallgr. We
This applies to thed(Acp) renormalons contained Wy, regard the large scale dependence generatefpyand its
andVqcp (and their higher-order correctionsand they are  higher-order corrections as the largest theoretical uncertainty
closely related to the IR logs and their resummation. Weof our prediction.
suspect that further investigations of all these problems may Let us note the effects of the operatévy, or Wy
be a way to clarify and solve the problem of the operator+ 5W,, in particular: the level spacings between consecu-
Wya we face here. tive n’s are increased, while th&-P splittings are reduced.
The reason can be understood as follows. The operator
Wya(+ 6Wya) generates an attractive potential proportional
VI. THE SPECTRUM to 1k2 (with a logarithmic correctionwhich is particularly

. . . strong at short distances. Hence, those states which have
In this section we compare the whole bottomonium spec-

trum as determined experimentally with various theoretical_____

predictions. We list the energy levels numerically in Table IX — o _
and show the spectrum in Fig. 10. The levels were calculated” '€ change of; by this adjustment does not alter the qualita-
according to the framework explained in Sec. II, using thetive features of the predictions for the fine splittings and $e
input parameten(s5)(Mz) =0.1181 and including the effects splittings discussed in previous sections.

; 2We follow the scheme and the scale-fixing condition A of Sec.
gf iLzJirijndS%Ag\\l?. We employed the scale choices=1, 2, IVB of [3], except that we use the numerical solution to the

_ _ renormalization-group equation for the strong coupling constant.

In this section we usen,=4.234 GeV instead ofm,  The results are obtained for the input parametefS)(M)
=4.190 GeV to make the prediction for theSlstate =0.1181 and 0.1161; the prediction with the latter input agrees
coincide with the experimental value for our favored scalebetter with the experimental data.
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TABLE IX. Energy levels for all states including(’, U+ dU, W,, andWya+ dWya. The parameters used ar§’(M;) =0.1181 and
m,=4.234 GeV; this choice aiy is explained in the text.

u 1S 1P, 1P, 1P, 2S 2P, 2P, 2P, 3s

1.0 9.369 9.818 9.840 9.856 9.982 10.182 10.194 10.203 10.281
2.0 9.424 9.894 9.918 9.936 10.014 10.231 10.245 10.256 10.303
3.0 9.460 9.915 9.938 9.956 10.032 10.246 10.260 10.270 10.315
4.0 9.481 9.927 9.949 9.966 10.043 10.254 10.267 10.277 10.321
5.0 9.494 9.934 9.955 9.972 10.050 10.259 10.271 10.281 10.325
Expt. 9.460 9.860 9.893 9.913 10.023 10.232 10.255 10.268 10.355

larger wave functions close to the origin acquire larger bindimodel still has a better agreement with the experimental
ing energies. Since the states with lowehave larger am- data, since it includes more parameters which can be ad-
plitude close to the origin and therefore acquire larger bindjusted.
ing energies, the level spacings between the adjan&nt In general one should carefully take into account theoret-
become wider. Since th® states acquire larger binding en- ical uncertainties when comparing the whole spectrum with
ergies than th@ states, thé&-P splittings becomes narrower. the experimental data. Based on the renormalon argument,
Generally, our prediction of the spectrum has a betteeach energy level hagat least an uncertainty of order
agreement with the experimental data than the fixed-ordeA%CDrz, wherer should be taken as a typical size of the
results. The agreement seems to be better for a larger scajaarkonium state. Theoretical uncertainties contained in
choice, which appears reasonable, since the natural scale Bf,(r) in the regionr <r g can be represented typically by
the operatoiVya+ SWya would be large(The scale depen- these renormalon estimates5]. Referencg3] estimated the
dences due to other effects are much smalldre agreement uncertainties to be+(5-30) MeV for the B state,
seems to be optimal for a scale choijge=3-4 GeV. We  +(20-130) MeV for then=2 states, and- (40—-220) MeV
also examined our predictions for different values of the in-for the n=3 states. On the other hand, the level spacings
put a(s5)(Mz) within the present world-average values (splittingg have smaller theoretical uncertainties since these
0.1181-0.0020[25]. We find that generally all the level theoretical uncertainties cancel, at least partly, as we dis-
spacings and splittings become larger for larg§?(M,),  cussed in the previous two sections.
since the binding energy increases. The widening of the level Let us estimate the errors of our prediction from other
spacings, however, can be compensated largely by choosirggurces. In the left part of Fig. 11 we show the effects of a
a larger value fop. The spectrum of the phenomenological variation of theb-quark pole mass by-300 MeV from the
value listed in Table I(For the error estimates we set the
scale tou=3 GeV.) The states with principal quantum num-

1

|
|
1

||

1

=1 =92 =3 =4 =5 Eichten— BSV BSV
K " . # # Bxe Quigg (1161 (1181) mp—300 MeV QCD  m,+300 MeV Ly QCD 20

FIG. 10. Comparison of the energy levels obtained with differ-  FIG. 11. Analysis of various uncertainties: In the left part of the
ent formalisms. The columns labellgd=1 throughu=5 show  diagram we show the effect of a shift af300 MeV of the pole
our results, where nowr®)(M,)=0.1181 andm,=4.234 GeV  massm, while keeping the MSnassm, that enters the potential
have been used to make th& %tate coincide with experiment for Ej,(r) constant. To make theSLstates concide, we have shifted
pn=3 GeV. The columns fox=1, 2, 4 and 5 GeV have been the spectrum form,—300 MeV (my+ 300 MeV) down (up) by
shifted to achieve this coincidence. “Exp” shows the experimentalabout 20 MeV. The right part shows the effect of changing the slope
values and “Eichten-Quigg” those obtained|iti. Finally, “BSV” of the IR part ofEj(r) by a factor of 1/22). (The definition ofC,
corresponds to the formalism ¢8]; the two columns represent is given in Sec. |l B. The effect of this change on theSlstate is
choices ofags)(Mz)=O.1161 and 0.1181, respectively. negligible, so that the spectra did not have to be shifted.
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tions and the energy levels through our use Egf(r),
which is the characterizing feature of our analysis. We have
_ eliminated the scale dependence frdép,(r) by fixing a
N specific scheme and we have discussed scale depedences
I originating from the other terms of the Hamiltonian. The
agreement of the fine splittings among th@; Istates be-
tween the theoretical prediction and the experimental data
improved drastically as compared to the fixed-order predic-
— tion of[2,3]. We find that the centering of the wave functions
towards the origin as compared to the Coulomb wave func-
tions, due to the strong attractive force in the intermediate-
distance region, strongly enhances the fine splittings. We also
find that, in accord with a naive expectation, the natural
Fichten— BSV  BSV scales of the fine splittings are larger than those of the bound
Quigg  (1161)  (1181) states themselves; the latter were used in the analyses of
i _ [2,3]. The predictions for the fine splittings are stable against
_FIG. 12. For comparison we show the bonomo”'u{g SPeClUMypa yvariation of the scalg and are in reasonable agreement
with the WyatoWya term artificially set to 0 andas™(Mz) ity the experimental data both for théland 2P; states.
=0.1201 andn,=4.151 GeV; otherwise the conventions are as in\yis a1s0 examined th&-P level splittings. The a]greement
Fig. 10. The scale dependence is decreased and the agreement \I\(}\mh the experimental data has improved as compared to the
the experimental spectrum is strongly improved with respect to Figfixed-order results, but the predictions are still somewhat
10, indi<_:ating a phenomenological preference for a S’lmlorESSiogmaller than the éxperimental values. The predictions for
mechanism foly these splittings are stable against the variatiop dfetween
2-5 GeV but become unstable for lower scales between 1-2
GeV. Natural scales of th®&-P splittings are also found to be
larger than those of the bound states. On the other hand, the
predictions of the level spacings between the adjacent
depend rather strongly on the scale This stems from the
large scale dependence of the operatdy, and must be
regarded as a major source of uncertainties in our predic-

iati fthe | dist tof th i . tions. We are motivated to choose a relatively large value for
}[/r?rla 'Ontr? de Ogghd'; ance part_o Vevpo enE;ﬁp(:) In N the scaleu in view of the dominance of short-distance con-
€ zeroth-order schanger equation. We vary the tangent ., 4ong to{ | Wnal ). (Other effects are much less scale

of the linear potential at>r g by factors of 2 and 1/2The a (5)
first derivative of the potential then becomes discontinuousdependen)' If we choosen=3-4 GeV, and foras™(Mz)
atr=rs.) The variations of the energy levels are of order = 0-1181 andm,=4.234 GeV, the agreement between our

+(2-5) MeV for the P states and+ 15 MeV for the B prediction and the experimental data for the whole bottomo-
state, while they are smaller than 0.1 Mé@nd therefore not  NiUMm spectrum is fairly good,_and is c0n3|de_rat_)ly better than
visible in Fig. 11 for the lower states. This can be easily the agreement between the fixed-order prediction and the ex-
understood because only the states with principal quantuff€rimental data. There seem to be some indications, how-
numbern=3 have a wave function that extends to large®Ver, that the contribution of the operatéfy, reduces the
enough distances to probe the potential in this region. stablity of the theoretical prediction and at the same time
For the sake of comparison, we show in Fig. 12 the pre\orsens the agreement between the prediction and the ex-

dictions for the bottomonium spectrum when we set thgPerimental data. At the present state we consider our predic-
Wyat oWy, to O artificially [in this figure we use tONS to be consistent with the experimental data within the-

a®)(M,)=0.1201 andm,=4.151 GeV]. We see that the Orelica uncertainties.

e d d d ¢ dth ) h Note addedAfter this paper was submitted, we received
scale dependence re udes expec edand there is a muc 34] which confirmed in vNRQCD framework the result of
better agreement with the experimental data. Phenomen

logically this may be taken as an indication that the contri- NRQCD[33], and the disagreement we mentioned at the
. .end of Sec. V has been resolved.
butions of Wy, should be suppressed by some mechanism.

1

1

|
1

pu=1 n=2 pn=3 u=4 n=>5 Exp

bersn=1 and 2 are shifted ugfdown) by about 20 MeV
when the pole mass is shifted doviup) by 300 MeV; for the
states with principal quantum number 3 this variation is
about* 15 MeV. Consequently if we compensate the overall
shift such that the & level agrees with the experimental
value, only then=3 levels vary by about-5 MeV.

In the right part of Fig. 11 we also show the effect of a
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eigenstatéy) of HI™P defined in Eq(7). We substitute the Hence, the expectation value can be written as
following operator identities taV, :

1

1. .10 . (WAl )=~ ——([EP~Eimp(1)1?)
Srioplpl=p?o - —4nsr), (A1) amy
r r

_CF“S<E$)‘Eimr’(”>+CF“S|(|+1)

p?=m[H{™ — Ejmp(1)]. (A2) m, r m?
Then one finds 1 37Cras . 5
X\ =)+ ——=—|¥0)]". (A4)
m,

1 . 37Cra
-~ _ppimp)_ 2, 2UEFTS o3)
W= 4mb[H0|mp Eimp(r)] + m2 8¢ )(I’)

b All quantities on the right-hand side can be evaluated from

Cras(1 . Crag L2 the radial wave function and the energy eigenvalue, which
) —,Hgmp)_Eimp(r) t—— 3 (A3) are obtained by solving the Schilinger equation numeri-
My LT 2my r cally.
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