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1 Introduction

One of our cherished hopes for the LHC is that it will discover an elementary particle that

constitutes the dark matter permeating our Universe. Such a particle would necessarily

carry neither electric nor colour charge and would be invisible in detectors, its presence

being inferred from an excess of events with measured missing energy.

Though the discovery of a new invisible particle at the LHC would surely be serendip-

itous in itself, making the subsequent connection between such a particle and the dark

matter in the cosmos presents a formidable challenge. To do so, one would need to mea-

sure the basic properties of the particle, such as its mass, spin, and couplings, in the

laboratory setting. Such measurements are inevitably complicated by the fact that the

particle, along with information about the energy and momentum that it carries, is lost.

The fact that information is lost does not render the situation hopeless, however.

Indeed, in doing experimental data analysis, one is often faced with the situation that

parameters are either poorly measured, or not measured at all: the remedy is simply

to marginalize with respect to such parameters when computing the likelihood of some

hypothesis. But in order to do so, one needs to have a well-defined hypothesis. This strategy

has worked rather well for Standard Model physics, where, for example, the presence of

invisible neutrinos in leptonic decays of the top quark has not prevented us from measuring

the mass of the latter in that channel. But it is not obvious that the strategy will work well

when it comes to new physics, beyond the Standard Model. One can, of course, simply
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impose a hypothesis by fiat, in the form of an explicit Lagrangian, but then one runs the

risk that the hypothesis may turn out be wrong, in which case inferences based upon it

should not be trusted.

Another strategy is to hope that Nature is benevolent enough to supply us with new

physics, within the reach of the LHC, that allows us to make measurements whilst only

assuming a much more general hypothesis.1 Preferably, one would like to make the hypoth-

esis minimal, for example assuming that new particles are produced in pairs and that each

decays to the same invisible particle.2 This assumption typically holds in models where

dark matter is stabilized by a parity symmetry, e.g. supersymmety with R-parity and

universal extra dimensions with KK-parity. With this assumption, we can perform mass

measurements purely based on kinematics [4.5];3 for other measurements, one might need

to go further and reconstruct energies and momenta event-by-event. Examples discussed

previously include measurements of spin [5] and CP -violation [6].

One could imagine doing so in a theory that predicts many new particles, with masses

roughly degenerate. In such a theory, we expect that heavier new particles, once produced,

will decay via a series of cascade two-body decays (which have greater phase space available

than decays with three or more bodies, at least in the limit that the masses of the decay

products may be neglected), terminating with the neutral, dark matter candidate particle.

Each decay along the chain imposes a mass-shell constraint on the kinematics of the event.

If there are enough constraints, all energies and momenta may be reconstructed. However,

one still faces a number of difficulties in reconstructing such events at the LHC:

(1) The new particles result from collisions between constituent partons of the incoming

protons, whose momenta are unknown.

(2) By definition, the processes of interest involve invisible final-state particles.

(3) Some of the decay products may be coloured partons, which manifest themselves in

the detector as hadronic jets. There are intrinsic uncertainties in reconstructing the

kinematics of the parent partons from their associated jets — the jet energy and angle

resolution of the detector, the treatment of jet masses, hadronization and underlying

event effects, etc.

(4) There are often combinatorial ambiguities in assigning final-state objects to the decay

chains.

In an ideal world with only difficulties (1) and (2), mass-shell constraints plus missing

transverse momentum measurements (for single events or multiple events of the same pro-

cess) can suffice to reconstruct full event kinematics. However, even in this case equations

for unknown masses or momentum components are typically polynomials, with multiple

solutions, only one of which is correct. The question then arises: how should we choose

between the solutions?
1Even with a more general hypothesis, a likelihood based analysis may bear fruit [1, 2].
2Alternatively, one could add limited dynamic assumptions, in the form of an effective Lagrangian or

“simplified model” [3].
3For a review of kinematic methods for mass determination, see [4].
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These polynomials have real coefficients so their roots must be real or else complex-

conjugate pairs. Often the polynomials are of even degree, in which case there is at least

one incorrect real root accompanying the correct one.

Some of the polynomial roots do not correspond to solutions of the original kinematics.

This is obviously the case for complex roots, but may also arise for real roots. There are

two reasons for this. One is the logical abhorrence, familiar to all of us from our schooldays,

that, while x = y implies x2 = y2, x2 = y2 implies either x = y or x = −y. Thus, while

a root of the constraint equations is also a root of a polynomial equation that is obtained

from them by a process of squaring operations, the converse is not necessarily true. The

other reason is that roots may be physically unacceptable on other grounds, for example

if a reconstructed energy exceeds the centre of mass energy available in a collision.

But often there are multiple acceptable real roots. In any case, in the presence of the

uncertainties (3) the correct root could become complex. These effects can be regarded

as perturbations of the coefficients of the polynomial. Then the only way the correct root

can become complex is if, as the perturbation is increased, it collides with an incorrect real

root and they both move into the complex plane in conjugate directions. This requires

that the correct and incorrect roots are close together in the absence of the perturbation.

Remarkably, it often happens that correct and incorrect real roots are indeed close

together. This can happen if the process involves a sequential decay chain with a large

mass hierarchy, or conversely an approximate degeneracy. To be explicit, consider the

problem of reconstructing the mass of some particle at the head of a cascade decay chain.

(a) If there is a large hierarchy, a mass in the chain is approximately zero on the scale

of masses higher up the chain. If p and q are the 4-momenta of decay products of

a zero-mass object, which must themselves have zero mass, the mass-shell condition

(p+q)2 = 0 implies p ∝ q, which represents two more constraints than (p+q)2 = m2,

so the number of solutions is reduced. This means that roots of the polynomial

must coalesce (or move to infinity, but then they cannot be genuine solutions of the

kinematics). So for an approximately zero mass, there may be an incorrect real root

“close to” the correct root.

(b) Similarly if the decay product with 4-momentum q has mass equal to the parent mass

m, then p must be infinitely soft and the parent must also have 4-momentum q, which

represents additional constraints. So again roots must coalesce in this limit, and be

“close” near this limit.

In fact, since correct and incorrect solutions must be perfectly correlated (in that they

coincide) at both extremities of the range of possible intermediate mass values, it turns out

that there is a high degree of correlation between correct and incorrect solutions for any

values of the intermediate masses.

We shall see however that the “closeness” of solutions (or, equivalently, their degree

of correlation) is difficult to define quantitatively. For certain kinematic configurations,

divergence from the limit can be very rapid as the hierarchy or degeneracy is broken.

Nevertheless it means that in these circumstances even the incorrect roots will be more

– 3 –



J
H
E
P
0
9
(
2
0
1
1
)
1
4
0

densely distributed near the correct value. And in the presence of effects (3) the real parts

of complex roots will be also tend to be close to the correct value, with small imaginary

parts. Therefore it can make sense simply to plot the real values of all solutions, with a

consequent gain in statistics.

In the presence of combinatorial ambiguities (4), we cannot in general expect to get

any real roots from wrong combinations. The only general feature is that the polynomial

coefficients are still real and so the roots must be real or occur in complex-conjugate pairs.

However, if there is a hierarchy or near degeneracy there will be approximate permutation

symmetries that imply that the corresponding wrong combinations have roots close to those

of the right combination:

(a) When there is a mass hierarchy, visible objects further down the chain are approxi-

mately collinear and therefore permuting their momenta will not significantly affect

the reconstruction of kinematics higher up the chain.

(b) When there is an approximate degeneracy, some visible momenta will be soft and

permutation of these will also not significantly affect reconstruction.

As before, the correlation between right and wrong combinations, which is perfect at

either end of the interval of allowed intermediate masses, persists throughout the interval

of intermediate masses. Thus again in these cases it can make sense to take the real parts

of all solutions for all combinations. There will be a peaking around the true solution when

the combination is right, and also when the combination corresponds to an approximate

permutation symmetry, plus a “background” due to non-symmetric wrong combinations.

In a later section, we shall present an abstract discussion of these phenomena, showing

that they have a natural formulation in terms of the theory of Riemann surfaces. We shall

also investigate, via a combination of analysis and numerical simulations, several examples.

Before doing that, we would like to whet the reader’s appetite by means of an illustrative

example, which is not only simple enough that the behaviour may be understood without

too much effort, but also is relevant for collider physics today. The example concerns

measuring the mass of a top quark decaying in the leptonic channel.

As this example makes clear, our insights are not limited to new physics, beyond the

Standard Model. Indeed, experimental analyses involving event reconstruction techniques

are ubiquitous in collider physics. As an example, whenever one observes a lepton in

association with missing energy at a hadron collider, one has the option of using the

known mass of the W boson to reconstruct the four-momentum of a hypothesized W -

boson in the event. This information might then be used to study, for example, spin

correlations or asymmetries (charge or forward-backward) in pair production of top quarks,

or to reconstruct a resonance in the WW channel (such as the Higgs). Similarly, whenever

one observes a τ candidate, one may reconstruct the momentum of the τ by assuming that

the neutrino emitted in the τ decay is collinear with the visible decay products [7]. Until

recently, this method was employed by both the ATLAS [8, 9] and CMS [10] collaborations

in their strategies for searching for Higgs bosons. However, requiring that the reconstructed

momenta be physical forces one to discard up to half of the events [8, 9], in the presence
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of detector resolution, and this strategy has been abandoned in recent studies [11, 12].

We present a different method for reconstructing events, using the information that comes

from the secondary vertex in τ decays. We argue that in this case it makes sense to retain

unphysical solutions, with a consequent gain in statistics.

Moreover, even these examples involving SM neutrinos have applications in new physics

searches: reconstruction of the W mass in this way was used recently to look for a resonance

in the dijet plus W channel that might explain the recent anomalous excess observed by

CDF [13]. It has also been suggested as a way to discover (and distinguish between) a new

tt or tt resonance in the di-leptonic channel [14].

1.1 The top quark example

Consider a top quark, t, decaying to a bottom quark, b and a W -boson, which in turn

decays to a lepton, l and an invisible neutrino, ν in 3 + 1 spacetime dimensions, with the

neutrino momentum in the two directions transverse to the beam inferred from the missing

transverse momentum in the event.4 We denote the mass and four momentum of particle

i by mi and pµ
i = (Ei,pi, qi) where p are the momentum components in the two directions

transverse to the beam. The mass shell constraints then read

m2

t = (pν + pl + pb)
2, (1.1)

m2

W = (pν + pl)
2, (1.2)

m2

ν = p2

ν , (1.3)

pν = /p , (1.4)

where we have enforced conservation of four-momentum and where /p is the inferred missing

transverse momentum. Now, assuming the masses other than mt are already known, these

constitute five equations in five unknowns, namely pν and mt. Thus one can hope to

reconstruct both the top mass and all the particles’ four-momenta in an event.

A little algebra shows that the last four equations can be reduced to a quadratic

equation in either the energy or longitudinal momentum of the neutrino. Hence, using the

first equation, one may obtain a quadratic equation in m2
t , with two real solutions, one of

which must have the correct value of m2
t . Neglecting the masses of the b quark, the lepton

and the neutrino, the difference between the two solutions is given by

El∆Eν = ql∆qν =
Elql

p2

l

√

(m2

W + 2pl · /p)2 − 4p2

l /p2 , (1.5)

∆m2

t = 2(Eb∆Eν − qb∆qν) . (1.6)

This simple expression for the difference between the correct and incorrect solutions

for the top mass already contains much information. Firstly, we see that, as the mass of

the W increases towards mt, such that the b becomes soft, the difference between correct

and incorrect solutions for mt (though not for Eν and qν) vanishes. Secondly, we see

that the differences all vanish as the mass of the W decreases to zero, since in this limit

4For pair produced top quarks, we assume that the other top quark decays to visible hadrons.
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the lepton and neutrino become collinear, such that (pl · /p)2 − p2

l /p2 → 0. Therefore we

expect that near either of these limits, wrong solutions for the top mass will be densely

distributed over many events near the right solutions. Thirdly, we see that if one starts at

large enough values of mW (near mt) and decreases mW , the wrong solution will always

begin by moving away from the right solution, eventually turning around and coming back

towards it at small mW . The turnaround point depends on the kinematics of a particular

event, but it tells us that, at a fixed, small value of mW but with multiple, random events,

we can expect that the wrong solutions will still be more densely distributed near the right

ones. Nevertheless, sometimes the wrong solution will be rather far away from the right

solution, leading to large tails in our distributions. Indeed, for the extreme case of events

that have pl = 0, we see that the wrong solution lies infinitely far away from the right

solution. These events form a set of measure zero, but nevertheless, we learn that very

large tails can arise.

We shall return to this example in section 3.1, where we shall provide a simple geometric

explanation of the above phenomena and identify further interesting properties of the

solutions.

2 Generalities and connection with Riemann surfaces

In this section, we give a more abstract discussion which, although (we hope) illuminating,

is not necessary to understand the examples given in later sections and may be skipped by

readers who wish to avoid mathematical niceties.

Let us consider, then, some cascade decay or decays, in which the unknowns, corre-

sponding variously to energies or momenta that go unmeasured (for example those of in-

visible particles such as neutrinos or dark matter candidates) or a priori unknown masses,

are equalled or outnumbered by the constraints, coming from the mass-shell conditions and

measurements of total “missing” momenta, inferred from global momentum conservation

in an event. For the time being, we assume that there are no combinatorial ambiguities and

that all quantities are well-measured. This set of equations then has at least one solution

(the right solution), but may also possess wrong solutions, which for a generic event will

lie in a finite set.

As we have already remarked, there may exist limits of the parameters in which the

number of constraints is effectively increased. Now, it may be the case that these extra con-

straints are redundant, in the sense that they are already implied by the other constraints

on the system. If they are not, then the number of solutions will be reduced.

This reduction in the number of solutions begs the question: what happens to the

other solutions as the limit is taken? In particular, where do the other solutions lie when

one is close to the limit? Two possibilities suggest themselves. One is that the wrong

solutions become larger and larger and eventually go to infinity. The other possibility is

that multiple solutions coalesce in the limit, such that the differences between solutions

are small close to the limit. If this is the case, then we have an effect whereby wrong

solutions may lie close to right solutions, leading to an apparent correlation between the

two in samples of multiple events.
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Unfortunately, it is rather difficult to see explicitly from these generic arguments which

of the two qualitative possibilities obtains; nor is it easy to decipher quantitatively, simply

by staring at the system of constraints, how the number of solutions changes. To do that,

it is convenient to reduce the set of constraints to a single equation in a single variable.

Since the constraints involve, at worst, the square root operation, one can, by repeated

squaring operations, always write this single equation as a polynomial equation in the

single unknown, for which we wish to solve. In what follows, we would like to study the

behaviour of the solutions (or roots) of this unknown as another parameter in the system

(an intermediate input mass, say) is varied. We can, by further squarings, always write the

single equation as a polynomial in this parameter too, such that we arrive at a polynomial

equation in two variables. This naturally leads us into a discussion of Riemann surfaces.

Before that, we remind the reader that the process of squaring operations just described

introduces an unpleasant complication: solutions of the polynomial need not be solutions

of the original constraint equations. We shall see explicitly that this can happen in one of

our later examples. One should always check explicitly that solutions obtained from the

polynomial are indeed bona fide solutions of the original system of multiple equations.

2.1 Connection with Riemann surfaces

Let us now consider our polynomial equation in two variables: one, say, an unknown mass

w (we choose the notation for this section to match that of complex variable theory), and

the other, say, an input mass z of an intermediate particle somewhere further down the

chain. We seek the values of w, possibly complex, that result from real input values of the

known mass z. But the discussion will be clearer if we allow both to take complex values.

So we have a polynomial, P (w, z) = 0 of degree (n,m), say. Ultimately, we wish to solve

this for w given some input value z, but for now, let us just consider it as a polynomial in

two variables (or, an algebraic curve).

Since this is an analytic constraint on two complex variables, it manifestly defines a

Riemann surface, viz., a 1-complex-dimensional, analytic, manifold, Mg, of genus g.5

We may also find two less explicit descriptions of the Riemann surface by solving

P (w, z) = 0 to obtain two “functions” w(z) and z(w). These are, of course, multival-

ued, and have branch point singularities whenever the corresponding derivatives, dw/dz or

dz/dw, do not exist. Since P is just a polynomial, and since

P = 0 =⇒ ∂P

∂w

dw

dz
+

∂P

∂z
= 0 ,

the derivative dw/dz exists unless ∂P
∂w

vanishes. One can easily show, furthermore that this

is the condition for the polynomial P , considered as a polynomial in w, to have a repeated

root at some value of z. The branch points of these functions then define a Riemann

surface in the usual way: one makes arbitrary branch cuts, lifts the complex plane to a

multi-sheeted cover and obtains a single-valued function on Mg. It is important to stress,

however, that these two descriptions of the same Riemann surface (one arising from branch

5For a generic P , there exists a beautiful way to compute the genus of M
g directly from P using the

Newton polytope; sadly, we shall not need it here.
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points of w(z) and one from z(w)) are quite different. Indeed, one is an n-sheeted cover

and the other is m-sheeted. Moreover, their branch points are not the same.

Now, we are interested in the problem of finding the solutions for the unknown mass w

that result as we vary the input mass parameter z. The description of Mg that is relevant

for us is therefore the one provided by the function w(z). (If we were interested in the

inverse problem of solving for z given w, the appropriate description would be in terms of

z(w); we repeat that these two descriptions differ in their branch structure.)

We may now ask what happens as we vary the input mass parameter z along a trajec-

tory in C that goes along the real axis from some initial value towards the origin, where the

nature of the mass-shell constraint changes, such that the number of constraints increases.

We already know that the behaviour of the solutions must be completely smooth, except

for possible branch point singularities. We also expect that the number of solutions must

decrease at the origin. We now ask what this implies for the Riemann surface. There are

three possibilities, which we discuss in turn.

One possibility is that, due to the logical abhorrence mentioned above, some of the

solutions of the polynomial simply cease to become solutions of the system of multiple

equations. We shall see it explicitly in the examples.

The second possibility is that some of the roots go towards the point at infinity. Whilst

perfectly acceptable from the point of view of the compact Riemann surface, we would no

longer regard these as physical solutions. In our examples, this only happens for special

kinematic configurations.

The third possibility, which is of most interest to us, is that the polynomial has a

repeated root, or equivalently, that w(z) has a branch point, at the origin in z. If so, in the

neighbourhood of the branch point, multiple solutions will lie close together, leading to a

correlation between correct and incorrect solutions, if one of those solutions is the correct

solution.

We note that the trajectories followed by the roots as the input parameter moves

towards the branch point at the origin may be highly non-trivial, as the reader may see

by glancing ahead at figures 4, 5, and 6, which illustrate the later examples. The left-

hand column of each figure shows the trajectories, projected from Mg into the complex

plane, followed by the roots in an event. We shall discuss these in more detail later. For

now, we note that the roots can indeed coalesce at branch points, that they can move

away from the branch point before moving towards it, and also that they can reverse,

or otherwise change, their direction, following a cusped trajectory. The cusps do not

correspond to singular branch points of the description of the Riemann surface in terms of

w(z), which, as we discussed above, arise when dz/dw vanishes (and are forced to lie on

the real axis in the projected w-plane, given that the coefficients of P (w, z) are real and

that we follow a real trajectory in z). Rather, they arise at the branch points of the dual

description of Mg in terms of z(w), where dw/dz vanishes. Indeed, at such points, then

writing w, z in terms of their real and imaginary parts, w = u + iv, z = t, we have that

du/dt = dv/dt = 0, whence dv/du is undefined. A classic example is the cycloid curve,

u = t− sin t, v = 1− cos t, which despite being a smooth map from t to (u, v) has cusps at

the points where du/dt = 0 and dv/du is undefined.
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2.2 Combinatorics

The limit as one of the intermediate masses goes to zero is also interesting from the point

of view of the problem of combinatorial ambiguities. There are two types of combinatorial

ambiguities. One arises when different visible particles along a decay chain are indistin-

guishable in particle detectors. The second arises when new particles are pair produced,

and the subsequent decays involve identical (or rather indistinguishable) final states. In

particular, if the branching ratio for one decay dominates over all others, then the decay

chains will be identical (modulo charge conjugation), leading to an ambiguity in assigning

observed final state particles to one or other decay chain.

If such ambiguities are truly ambiguous, then the only robust manner in which to

proceed is to consider all possible assignments in solving the system of constraints. For

a p-fold ambiguity, one must solve the constraint system p times, obtaining p copies of

all solutions, both right and wrong. Of course, only one of these solutions is the cor-

rect one.

Now, in the limit that an intermediate mass goes to zero, it is easy to see that ambi-

guities in the arrangement of visible particles further down the chain are irrelevant, in the

sense that the solutions of the constrained system after permutation are the same as the

original solutions. Why? In the limit that an intermediate mass goes to zero, all subse-

quent particles (which must also be massless) must be emitted collinearly. They may be

fully characterized by the fraction of the energy of the parent particle that they carry, such

that the order of emissions is irrelevant.

Since permutations down the chain are irrelevant in the limit that the mass vanishes,

and since we expect smooth behaviour in the solutions as the mass varies (for a wrong

permutation, we are simply solving a different polynomial, and we still have a Riemann

surface, albeit a different one), then for small intermediate masses, we should find that

solutions of the permuted equations are close to right or wrong solutions of the equations

with the correct particle assignment, for which the wrong solutions may, in turn, be close

to the right solution.

We now pause to remark that there is an important distinction between the reality

properties of solutions (right and wrong) of the right equations and those of the wrong

equations, viz. those obtained by a wrong permutation. In the former case (in the absence

of measurement errors), we are guaranteed that one of the solutions (the right one) is real.

(For an even polynomial, we are also guaranteed that there exists another real solution,

which may or may not lie close to the right solution.) When we solve the polynomial

equation corresponding to a wrong particle assignment, we are not guaranteed any real

solutions. Nevertheless, according to the arguments above, we expect solutions lying close

to the real solution, but possibly off the real axis, in the limit than an intermediate mass

is small.

Näıvely therefore, we can reduce the combinatorial ambiguity by only accepting solu-

tions that are real. As we shall now discuss, this is not necessarily the optimal strategy in

the presence of measurement errors.
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2.3 Mismeasurements

In the presence of measurement errors, none of the solutions obtained is the right solution.

Moreover, we are not even guaranteed to have any real solutions of our polynomial equation,

even with the correct particle assignment. This then re-opens the question of whether one

should insist on real solutions, as in [15], or whether one should accept all complex solutions,

or only those whose imaginary part is small, according to some criterion.

Let us now consider this issue in more detail. At least in the presence of arbitrarily

small measurement errors, it makes sense to retain only real solutions. Indeed, since we are

solving real polynomials, the complex solutions may only occur in complex-conjugate pairs.

Starting from the limit in which measurement errors vanish and one solution is the truly

right solution, we see that this solution must remain real as we increase the measurement

error, unless the measurement error is so large that the right solution can ‘pair up’ with

another solution and move off the axis. In order to do so, the error in the solution for the

mass resulting from the measurement error must be comparable to the distance between

the right solution and another wrong solution. If this distance were of order of the mass

itself, then one could argue that one should reject complex solutions. Indeed, for such a

solution to arise from the right, real solution would require a large measurement error, in

which case the event should probably have been discarded in the first place.

Unfortunately, we have argued above that the distance between right and wrong mass

solutions in the complex plane is not necessarily of the order of the mass itself. On the

contrary, we have argued that right and wrong solutions may coalesce in the limit that an

intermediate mass becomes small. So it is easier than one might expect for the right, real

solution to become complex in the presence of measurement errors. Of course, if one has

a good understanding of the size of typical measurement errors, one could choose whether

or not to accept complex solutions. In the absence of such an understanding, it would

perhaps make more sense to accept all complex solutions.

2.4 Classification of event reconstruction

Before discussing specific examples, let us attempt to categorize the different kinds of event

reconstruction that one may envisage and give examples of them. We will show that several

different kinds of reconstruction problem can be viewed as extensions of a basic momentum

reconstruction problem.

The basic problem we consider is to reconstruct the energy and momentum of one

or more invisible particles, in a single collision event, in which the masses of all particles

are assumed to be known. One example relevant for colliders is the leptonic decay of a

W -boson, where the neutrino has four unknown energy-momentum components, but there

are four constraints, namely the two mass-shell constraints for the W and the neutrino, and

the two missing transverse momentum constraints. A second example is the di-leptonic

decay of pair-produced top quarks. Here, there are two neutrinos and eight unknown

energy-momentum components, but there are also eight constraints, if all the masses are

known.

– 10 –



J
H
E
P
0
9
(
2
0
1
1
)
1
4
0

Now consider a momentum reconstruction problem of this type, but in which there

are more constraints than unknowns. Of course, one can still solve for the momenta if all

the masses are known, but one can go further, since the constraints then imply relations

between the masses of particles involved in an event. This then gives the possibility of

reconstructing not only the momenta, but also some or all of the masses. Indeed, even

with just one event, then if one already knows some of the masses, one may be able to

solve for the others. With the masses known, one can then go back and reconstruct the

momenta in that one event or indeed in any other. As a trivial example, one can always

turn a momentum reconstruction problem into a mass reconstruction problem by adding

one more particle (of unknown mass) at the head of a decay chain. As an example, taking

the decay of a W -boson above, one may add a top quark that decays to it (together with

a b) and solve for the mass of the top. This is precisely what we did in the introduction.

One may go even further: given that a single event of this type implies relations

between the masses, one can attempt to reconstruct all of the masses by simply combining

events. A possible collider example (which we shall study further later on) is given by pairs

of cascade decays, each with three visible particles on each chain. There are eight unknown

energy-momentum components (in 3+1 dimensions), but ten mass-shell and two missing

transverse momentum conditions. Thus each event can be reduced to two relations on the

particle masses. If the chains are assumed to be identical, such that there are only four

independent masses in the chains, one needs two events to reconstruct all masses. If the

chains are not identical, one needs four events.

In conclusion, we see that various mass reconstruction problems can be viewed as

extensions of the basic momentum reconstruction problem.

3 Examples

3.1 Single chain decays

We have already given a algebraic discussion of one example, namely that of leptonic decays

of the top quark. We saw that, once the W -boson mass is known and the neutrino mass

is assumed negligible, one may solve a quadratic equation for the mass of the top quark;

this quadratic equation reduces to a linear equation in the limit that mW /mt → 0 and

this in turn leads to a correlation between the right and wrong solutions for small, but

non-vanishing mW /mt. We would now like to generalize this example further and show

that its behaviour may be understood via simple, geometric arguments.

Consider a single decay chain in D +1 spacetime dimensions, · · · → C + · · · → B +2+

· · · → A + 1 + 2 + . . . , with visible particles 1, 2, . . . , terminating in an invisible particle A.

We assume that the visible particles are all massless and that the masses of all states are

known, and that we wish to solve for the unknown energy-momentum components of A. We

assume that 0 ≤ d ≤ D of the spatial momentum components of A can be inferred via some

kind of missing energy measurement. By analogy with a collider physics experiment (and in

a slight abuse of terminology), we will call these the ‘transverse’ directions; the unmeasured

momentum directions will be called ‘longitudinal’. We thus have D+1−d unknowns and we
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may solve for these provided we have an equal (or greater) number of mass-shell constraints.

We therefore need a chain containing (at least) D − d visible particles.

As it stands, this is a momentum reconstruction problem. We may turn it into a mass

reconstruction problem by adding one more parent particle of unknown mass at the top of

the chain. This adds one more unknown (the parent mass), together with one more mass-

shell constraint, so the system remains constrained. There are then D − d + 1 visible par-

ticles. In the example of the top quark decay described above, we have D = 3, d = 2, such

that we need one visible particle (the lepton), to solve for the momentum of the neutrino,

and two visible particles (the lepton and the bottom quark) to solve for the mass of the top.

The general constrained single cascade just described can be easily understood in a

geometrical way, given the following lemma: provided we only consider Lorentz boosts in

the subspace that is orthogonal to the transverse directions, then, if we consider two frames

F and F ′ related by such a Lorentz boost Λ, then the boost of a solution of the equations

written in frame F is itself a solution of the equations written in the boosted frame F ′.

This is obviously true for the right solution, but the Lorentz invariance of the mass-shell

constraints guarantees that it holds equally true for wrong solutions as well. An immediate

corollary is that, if the unknown being solved for is a mass, the solution will be the same

in any two such Lorentz frames.

We stress that the lemma does not hold if one considers boosts in the transverse di-

rections, since there is no sense in which the missing-momentum constraints are Lorentz

covariant. One does not even know how to boost the measured missing transverse momen-

tum to another frame, since the result depends on the unknown missing energy.

With the lemma in hand, it is easy to see what happens. In general, we can boost

to a frame in which all the longitudinal momenta of the D − d visible particles required

for the momentum reconstruction problem are linearly dependent, spanning a D − d − 1-

dimensional subspace. For example, we can boost to the longitudinal centre of mass frame

of the D − d visibles, in which the longitudinal momenta sum to zero. Figure 1 shows the

particles in this frame in a decay with three visible particles. In this frame, the mass-shell

constraints are invariant under a change in sign of the longitudinal momentum component

of A that is orthogonal to the subspace spanned by the visible longitudinal momenta. The

two solutions of the equations (viz. the energy-momenta of A) are thus degenerate in this

frame, with the exception of that orthogonal component, for which the two solutions are

equal in magnitude, but opposite in sign. In a different frame, the longitudinal boost will

of course mix up the components, such that none will be degenerate in general. We note

that this argument does not work in D = 1 =⇒ d = 0, because there is then only one

(massless) visible particle, and no finite boost will take us to its rest frame. Indeed, explicit

solution in that case shows that there is only ever one solution. More generally, whenever

D − d = 1, implying only one visible particle, the argument applies only if we can do a

boost to the longitudinal rest frame of the visible particle. Since the particle is massless,

we may do so only if the transverse momentum is non-vanishing.

Now, what happens when one of the intermediate masses is sent to zero? Then the

energy-momentum of A is necessarily collinear with the energy-momentum of visible 1 in

the above frame (and indeed in any other frame). Thus, the momentum component of
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Figure 1. The right and wrong solutions for the longitudinal momenta in the boosted frame, for

a single chain decay with three visible particles.

A orthogonal to the subspace spanned by the visibles is zero, and the two solutions for

the energy-momentum of A are degenerate in all components, in this frame, as are boosts

thereof.

Turning now to the related mass measurement problem (with one more particle added

to the chain), we see that, for all intermediate masses non-vanishing, there will be two

solutions for the mass of the added parent particle, obtained by plugging the two values

for the energy-momentum of A into the mass shell constraint for the parent particle. By

the lemma, these two values will be the same in all frames related by longitudinal boosts.

When an intermediate mass vanishes, the two values for the reconstructed energy-momenta

of A are the same, and so are the two values for the reconstructed parent mass. Finally,

when any intermediate mass is small compared to the mass that preceeded it in the chain,

the two reconstructed parent mass values should lie close together.

These properties are all confirmed by an explicit algebraic analysis. In the momentum

reconstruction problem, one obtains a quadratic equation (unless D− d = 1 and the trans-

verse momentum of particle 1 is taken to zero, in which case the coefficient of the quadratic

term goes to zero) which reduces to a linear equation in the limit that an intermediate mass

vanishes. For D = 3 and d = 2, one has a simple generalization of the top decay example

considered in section 1.1, viz. a single decay chain C → B +2, B → A+1 with an invisible

particle A carrying away the missing transverse momentum /p. In the case of top decay,

A,B,C, 1, 2 = ν,W, t, l, b. Taking the masses of A and B as known and neglecting those of

the visible decay products 1 and 2, we have in analogy with (1.5)

E1∆EA = q1∆qA =
E1q1

p2

1

√

(m2

B − m2

A + 2p1 · /p)2 − 4p2
1
(/p2 + m2

A) , (3.1)

∆m2

C = 2(E2∆EA − q2∆qA) . (3.2)

Then for mB → 0 all the solution differences vanish since we must have mA ≤ mB . We also

see that the two solutions for mC , but not for EA and qA, coincide when visible particle 2

is soft, corresponding to mC = mB.
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Figure 2. Solutions for the mass-squared of the parent particle C in the single decay chain

C → B +2, B → A+1, as functions of mB, for 20 “typical” events. The correct solution mC = 1 is

shown in black; the incorrect ones are in blue. While mB is varied, the events have fixed decay angles

in the parent (B and C) rest frames, distributed isotropically. The vertical red line corresponds to

the kinematics of top quark decay.

Since the difference between right and wrong mass solutions vanishes when the in-

termediate mass takes its maximum and minimum values and is non-vanishing elsewhere,

then the wrong solution (which is necessarily real) must change direction when we follow

a trajectory that covers the full range of intermediate masses. This illustrates in a rather

extreme way one type of behaviour we described earlier in our discussion of Riemann sur-

faces: in this case, not only does the wrong root move away from the right root before

returning, but the fact that it is also forced to be real means it traverses a cusp of angle π

as it does so. As discussed, this must correspond to a branch point of the dual description

of the Riemann surface.

Figure 2 shows the trajectories followed by the wrong solutions as the intermediate

mass mB is decreased from mC to zero, in a sample of twenty events. As expected, each

trajectory begins and ends at the right solution (mC = 1), but departs from it in the

intervening region. Moreover, whilst for the majority of events the wrong solution lies

close to the right solution throughout the trajectory (including the red vertical line, which

corresponds to the kinematics of top quark decays), the discrepancy can be large. Finally,

we see that the trajectories can change direction more than once.

There is yet one more interesting property of this decay chain, which is not evident

in our geometrical description. We find that the difference in right and wrong solutions is

independent of the mass of A, as one varies the mass of the intermediate B, whilst keeping
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the decay angles of all particles constant, as measured in their rest frames. This behaviour

is easily demonstrated from eq. (3.1). The momenta of particles 1 and A in the rest frame

of B have magnitude p∗ = (m2

B − m2

A)/2mB . Writing /p = pB − p1, the argument of the

square root in (3.1) can then be expressed as

4
[

(mBp∗ + pB · p1)
2 − p2

1(m
2

B + p2

B)
]

. (3.3)

Now as we are assuming particle 1 to be massless, its 4-momentum in the collider frame is

of the form pµ
1

= p∗nµ where nµ = (n0,n, n3) is a function of the 4-momentum of B and

the direction of 1 in B’s rest frame. The important point is that nµ is independent of mA.

Then (3.1) can be written as

∆m2

C =
4

n2
(E2n

3 − q2n
0)

√

(mB + pB · n)2 − n2(m2

B + p2

B) , (3.4)

which is manifestly independent of mA, as the p∗ dependence has cancelled. It follows that,

for given production and decay distributions of C and B, the curves shown are really only

functions of the ratio mB/mC . Accordingly we have marked the point corresponding to

top decay as mB = mCmW /mt = 0.46.

Turning this argument around, we can say that, if the mass ratio mB/mC has been

determined, then the distribution of the wrong solutions provides information on the decay

angular distributions, independent of the mass of A.

Another interesting single decay chain is that with four visible particles, E → D + 4,

D → C + 3, C → B + 2, B → A + 1. In this case, given the masses of particles A,B,C,D,

one obtains a quadratic equation for the mass of the parent particle E without any missing

momentum measurement. The difference between the solutions takes the form

∆m2

E = (m2

E − m2

D)f(mB/mC ,mB/mD; Ω) , (3.5)

where Ω represents the dependence on the decay angles. Thus again the distribution of the

wrong mass solutions is independent of the invisible particle mass mA. The function f is

complicated but vanishes as mC and/or mB → 0. Therefore the solutions coalesce in these

limits, and also as mD → mE . The fact that the wrong mass solution is forced to lie close

to the right mass solution in the limit of either large or small intermediate masses leads to

a correlation in the distribution of wrong solutions and the right solution in a sample of

multiple events. This is illustrated in figure 3, which shows the distribution of the wrong

mass solution obtained in a decay chain with four visible particles, for varying values of

the intermediate masses.

Shorter single chain examples where no missing energy measurement is available may

also be relevant for collider physics. Here one needs to combine information from multiple

events (making the hypothesis that each corresponds to the same signal), in order to obtain

a constrained system [16, 17].

3.2 Double chain decays

Let us now turn to pair produced particles, each of which undergoes a cascade decay to

an invisible particle. We label one chain as before, and the other with primes: · · · →
C ′ + · · · → B′ + 2′ + · · · → A′ + 1′ + 2′ + . . . . It is not necessary to assume that the two

decay chains are identical, or even of the same length.
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Figure 3. The distributions of ∆m2
E

/(m2
E
− m2

D
) for the decay chain E → D + 4, D → C + 3,

C → B + 2, B → A + 1, showing the correlation between right and wrong solutions.

Now, in the absence of measured missing energy, the constraints on the two cascade

decays are decoupled from each other; we can, thus, apply independent Lorentz boosts to

the two chains and show that, as above, solutions exhibit a pairwise degeneracy in the limit

that intermediate masses vanish.

Even in the presence of missing energy constraints that couple the two chains, we may

be able to reconstruct the two cascade decays individually, in which case the arguments of

the previous section still go through. Let us consider double chains, with n and m visible

particles, in D + 1 spacetime dimensions with d measured missing momenta. Assuming all

masses are known, to solve for the momenta of the two invisible particles A and A′, we

must have that 2D = d + n + m. For example if D = 3, d = 2, n = 3, m = 1, we can

first solve for the n = 3 chain, ignoring the missing energy and then reconstruct the m = 1

chain using the missing energy. Again, this may be converted into a mass reconstruction

problem by adding two parent particles, at the top of each chain, or indeed one parent

particle at the top of both chains.

Novel cases arise when we cannot decouple the two chains. The simplest example is

D = d = 2, n = m = 1. Whilst this example is not obviously relevant for hadron collider

physics, it nevertheless provides a useful illustration of what may happen in situations that

are relevant for colliders, such as D = 3, d = 2, n = m = 2.

This D = d = 2, n = m = 1 example can, by elimination, be reduced to a quartic

equation for the invisible particle momenta, with four complex roots, of which either two

or four must be real, in the absence of combinatorics and measurement errors. We solve

the quartic equation numerically for several events corresponding to the topology with a

single particle C at the head of two identical decay chains. In the limit that the masses of

B and B′ vanish, the system of constraints collapses to a linear equation. Indeed, in each
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chain, the visible particle 1 or 1′ is forced to be collinear with the invisible particle A or A′,

such that we have the equations pA = αp1 and pA′ = α′p1′ , with α,α′ unknown. Plugging

these into the two transverse missing momentum constraints gives a unique solution for

α,α′ and hence for all the other unknowns.

Thus, provided solutions do not move off to infinity or cease to become solutions as

mB,B′ → 0, then all four solutions must coalesce at that point, with the three wrong

solutions lying on top of the right solution.

A complication arises when we try to solve for the mass of the parent particle C at the

head of the two chains. This quantity involves the energies of the invisible particles A,A′

as well as their 3-momenta. For the real solutions we can legitimately demand that these

energies be positive, but for the complex solutions we have to accept either sign, making

four mass solutions for each solution of the quartic equation.

In figure 4, we illustrate what happens for four typical events. In the left-hand column,

we show all sixteen mass solutions in the complex plane, whereas in the right-hand column

we show only the real solutions (the number of solutions is therefore not constant). In

all events, we find that the solutions do indeed coalesce in fours as mB,B′ → 0, one set

corresponding in the limit to positive energies for A and A′ and the correct mass mC , and

the others to unphysical energies for one or both of A and A′.

A more realistic example for collider physics was studied in [15, 18], where pair decays

with three visible particles in each chain were considered: D → C+3, C → B+2, B → A+1

and similarly for D′ . . . 1′. In a single event, there are eight energy-momentum unknowns,

together with eight mass-shell constraints and two measured missing transverse momenta,

implying two relations between the eight masses along the two chains. If one makes the

further hypothesis that the chains are identical, then from two events one obtains four

relations between four masses, meaning that one can solve for all masses in the chain.

In [15], it was shown that the system of constraints could be reduced to a single polyno-

mial equation of degree eight in one of the masses. The strategy for dealing with wrong

solutions and wrong combinatorics was simply to accept all real solutions and a correla-

tion between right and wrong solutions of the type we describe was observed in numerical

simulations.

Again, it is a simple matter to show that, in the limit that mC,C′ → 0, this eighth order

equation reduces to a linear equation. (The same is true if mB,B′ → 0.) Indeed, in each

event and in each chain the visible particle 1 is forced to be collinear with the invisible

particle A, such that we have four equations of the form pA = αp1, with α unknown.

Plugging these into the four transverse missing momentum constraints (two components

for each of two events) constitute four equations in the four unknowns α, with a unique

solution.

In [15], the relevant masses were taken from the SUSY benchmark point SPS1a, and

were mA,B,C = 97, 143, 180 GeV and mD = either 565 or 571 GeV (for up or down squarks,

respectively). Since mC is substantially less that mD, we therefore conjecture that all eight

complex solutions lie close to the the right solution, leading to a correlation between right

and wrong solutions over many events. This was indeed observed for the real solutions

in [15]; the complex solutions were not retained.
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Figure 4. Solutions for the mass-squared of C in the double decay chain C → B +B′, B → A+1,

B′ → A′ +1′ in 2+1 dimensions, as functions of mB, for four “typical” events. The correct solution

is mC = 1. While mB is varied, each event has fixed decay angles in the parent rest frames. On the

left: trajectories of all 16 solutions in the complex mass-squared plane. Each trajectory starts with

a cross at mB = mC/2 (sometimes outside the region shown) and ends with a square at mB = 0.

The intervening points correspond to uniform steps in mB. On the right: corresponding plots of

the real solutions versus mB.
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Our arguments also permit us to make a useful statement with regard to combinatorics.

We have argued that permutations of visible particles 1 and 2 should be irrelevant in the

limit that mC,C′ → 0. Now, in the decay chains considered in [15], particles 1 and 2 are

either electrons or muons, leading to an eight- (for 2µ2e) or sixteen-fold ambiguity (for

4µ or 4e) per event, or a 64-, 128-, or 256- fold ambiguity per pair of events. But in the

limit that mC,C′ → 0, we argue that permutation of visibles 1 and 2 is irrelevant, in the

sense that the solutions obtained after the permutation will be the same as those obtained

beforehand. This translates to sixteen irrelevant permutations for a pair of chains and for

a pair of events. If we made the näıve assumption that a relevant permutation will lead

to a polynomial that has no real solutions, then we would conjecture that one should find

precisely sixteen times as many real solutions when one includes combinatorics as compared

to when combinatorial ambiguities are removed. In [15], a sample of one hundred events

was considered, corresponding to 4,950 event pairs, with 11,662 real solutions in total,

without combinatorics. This corresponds to 4,069 event pairs with the minimum number

of two real solutions, and 881 with the maximum number of four real solutions. Now,

with combinatorics, one must solve 120 times as many degree eight polynomials, but we

predict that the number of real solutions will increase by a factor of only sixteen and

furthermore that these will be correlated with the right solution. In fact, 185,867 real

solutions are obtained in [15], a factor of 15.93 increase compared to the situation without

combinatorial ambiguities! Moreover, the pattern of correlation between right and wrong

solutions is not changed once one includes combinatorics, as we expect. The mere fact

that an odd number of real solutions was obtained in [15] once wrong combinations were

included shows that one cannot expect perfect agreement: the algorithm used to solve

the eighth-order polynomials will, presumably, sometimes fail to converge. Moreover, we

only expect the permutations to be truly irrelevant in the limit that mC,C′ → 0; for non-

vanishing mC,C′ the number of solutions ought to change. Finally, polynomials obtained

from relevant permutations may still have real solutions. Indeed, though they are just

random polynomials, they have real coefficients and their zeroes are more likely to lie on

the real line than, say, on any other straight line drawn through the origin in the complex

plane.

3.2.1 Di-leptonic top decays

Another relevant example of pair cascade decays occurs already in the Standard Model,

namely decays of pair produced top quarks in the di-leptonic channel. There, each top

quark decays to a bottom quark and a W -boson, which subsequently decays to a charged

lepton and an invisible neutrino. Since the masses of all particle involved (including the top

quark) are relatively well-known, one can attempt to reconstruct the neutrinos’ momenta

event-by-event. Indeed, there are eight unknowns (the two four-momenta of the neutri-

nos), together with eight constraints (the six mass-shell constraints and the two missing

transverse momentum constraints). Such a reconstruction, if it can be achieved in practice,

would be useful, for example, for a likelihood based test of spin correlations [19]. It has

previously been shown that the system of constraints can be reduced to a single, quartic

equation in one unknown [20]. Here we remark only that, in the limit that the W -boson
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mass can be neglected compared to the top quark mass, the system of constraints reduces

to a linear equation in a single unknown. (The arguments are much the same as those given

above; we do not repeat them here.) Thus, we again expect a correlation between the right

and wrong solutions of the quartic, given the fairly small mass ratio between the W and

the top. This effect should enhance our ability to measure spin correlations between pairs

of top quarks.

3.3 Massless particle decays

In [21] search strategies were discussed for composite leptoquarks coupled to third-

generation quarks and leptons, which were argued to give a generic and striking signature

for models of strongly-coupled electroweak symmetry breaking that can be consistent with

constraints from flavour physics [22]. One challenging final state discussed there was the

decay of pair produced leptoquarks, each to a top quark and a τ -lepton, with one top

decaying hadronically and the other decaying leptonically.

Assuming the leptoquarks are rather massive (existing constraints suggest that their

masses should exceed a couple of hundred GeV), then one can neglect the mass of the

τ -lepton, such that the neutrino or neutrinos emitted in the τ decay may be assumed to

be collinear with the visible products of the τ decay. With this assumption, one is able to

solve for the unknown leptoquark mass, given the known masses of the final state particles.

To wit, on the one hand, there are seven unknowns, namely the leptoquark mass, the

energy fractions carried off by the neutrinos in the two τ decays, and the four momentum

of the neutrino from the leptonic W decay. On the other hand there are seven constraints,

namely the two missing transverse momentum constraints, the mass shell constraints for

the two leptoquarks, and the mass shell constraints for the leptonically-decaying top, its

daughter W , and its daughter neutrino.

It was shown in [21] that this system of seven constraints in seven unknowns can be

reduced to a single quartic equation in the energy fraction of one of the neutrinos coming

from a τ decay. It was also observed that there exists a correlation between the right and

wrong solutions of the quartic.

We now ask whether this can be understood in the light of the arguments presented

here. To do so, let us consider what happens to the four solutions of the quartic as

one of the intermediate masses is taken to zero. To begin with, we consider the limit

in which the mass of the W may be neglected compared to the mass of the top quark.

Then, one may show that the system of equations collapses to a single, linear equation.

Indeed, as mW → 0, the four-momentum of the neutrino coming from the W -decay must

be proportional to the four-momentum of the lepton coming from the W -decay; the only

unknown is the constant of proportionality, or, equivalently, the energy fraction carried off

by the lepton. Then, the mass shell constraint for the top quark, together with the two

missing transverse momentum constraints, make up a set of three equations that are linear

in three unknowns, namely the energy fractions carried off by the neutrinos in the two τ

decays and the W decay. Thus, there is a unique solution for the energy fractions and

indeed the other unknowns.
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However, it is not the case that the quartic equation collapses to a linear equation.

Rather, what happens is that the quartic equation collapses to a cubic equation; one

solution of this cubic is, of course, the right solution, whereas the other two solutions

are simply not solutions of the the original constraint equations, in the limit. This is

immediately evident from figure 5, where we exhibit numerical solutions of the quartic

equation for four typical events. Again, in the left-hand column, we show all four solutions

in the complex plane, whereas in the right-hand column we show only the real solutions.

In all events, we see that one of the wrong solutions coalesces with the right solution in the

limit, but the other two wrong solutions retain a non-vanishing imaginary part in the limit.

These complex solutions cannot be solutions of the original system of constraints in the

limit, since we saw that the original constraints reduce to three real, linear equations in the

three unknown energy fractions, with a unique, real solution. When inserted into the mass

shell condition for the leptoquark, these yield a single, real solution for the leptoquark mass.

Hence there is only a two-fold coalescence of solutions in the limit mW → 0, rather

than the four-fold coalescence that we might have expected. Nevertheless, this will lead to

a correlation between two of the real solutions of the quartic equation.

Figure 5 also shows (in red) that there are solutions which may be discarded on the

grounds of being unphysical. In the case at hand, we expect that the energy fractions

carried off by invisible particles in decays should not exceed unity. Thus, at least in

the limit that measurement errors and combinatorics were under control, one would have

grounds for rejecting these solutions, even though they result in real leptoquark masses.

We may also consider what happens in the limit that the mass of the top quark is

assumed to be negligible compared to that of the leptoquark. This obviously implies that

the W -boson mass may also be neglected, as described above, but it qualitatively changes

the behaviour of the solutions, as shown in figure 6. Indeed, one can show that neglecting

the top mass implies, on its own, that the system reduces from a quartic equation to a

quadratic equation. As we have repeatedly described, this implies either that roots go to

infinity (which we do not observe), or that roots cease to become solutions of the original

system of constraints, or that roots coalesce. For a generic event, we begin with two real

and two complex roots. Taking the top mass to zero forces us to have two real roots (since

the system reduces to a quadratic equation), but these cannot be the two real roots that

we started with, since we know that these coalesce in the limit that the W mass vanishes,

which is implied by the vanishing of the top mass. Thus, the two complex roots must also

both become real (and coalesce with each other) in the limit that the top mass vanishes,

and indeed this is what we see in all four events in figure 6.

Event 2 in figure 6 illustrates dramatically the kind of cusp behaviour that we described

in section 2.1, arising from branch points of the dual description of the Riemann surface.

3.4 Higgs to ττ decay

In section 3.3 we considered the decay of a very massive object into a top quark and a

τ -lepton, the latter being so highly boosted that it was a good approximation to neglect

its mass and treat its decay products as collinear. If we make the same approximation

for a Higgs boson in the favoured mass range 115 < mh < 150 GeV decaying into ττ , the
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Figure 5. Leptoquark mass solutions for four “typical” events, as functions of W mass, for a true

leptoquark mass of 1 TeV. On the left: trajectories of all the solutions in the complex mass-squared

plane. Each trajectory starts with a cross at mW = 0.17TeV and ends with a square at mW = 0.

The intervening points correspond to uniform steps in mW . On the right: corresponding plots of

the real solutions versus mW . The red portions of the curves correspond to unphysical values of

one or both τ jet energy fractions.
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Figure 6. Leptoquark mass solutions for four “typical” events, as functions of top mass, for a true

leptoquark mass of 1 TeV. On the left: trajectories of all the solutions in the complex mass-squared

plane. Each trajectory starts with a cross at mtop = 1TeV and ends with a square at mtop = 0.

The intervening points correspond to uniform steps in mtop. On the right: corresponding plots of

the real solutions versus mtop. The red portions of the curves correspond to unphysical values of

one or both τ jet energy fractions.

– 23 –



J
H
E
P
0
9
(
2
0
1
1
)
1
4
0

kinematics can be reconstructed unambiguously from the visible decay products and the

missing transverse momentum. On the other hand the boost is not so large and, especially

after taking into account detector resolution and acceptance, the reconstruction of the

Higgs mass may not be optimal.

One can avoid the collinearity assumption by making use of information on the τ decay

vertices. The most useful and best measured attributes of these are their impact parameters.

The impact parameter b is the displacement of a decay vertex in a direction perpendicular

to that of the visible decay momentum, in this case the τ jet momentum pj . Then the

invisible momentum pν must lie in the (b,pj) plane, so we can write pν = xb + ypj .

For hadronic τ decays, the invisible momenta are carried by single neutrinos and so their

four-momenta are fixed by x and y for each decay. These four quantities are subject to

two linear missing-pT constraints and two quadratic τ mass-shell constraints, giving four

solutions and hence a fourfold ambiguity in the reconstructed Higgs mass. However, from

our previous arguments the mass hierarchy mh ≫ mτ implies that the solutions should

tend to be clustered together.

We have investigated this reconstruction method using a sample of 50,000 simulated

LHC (pp at 14 TeV) events in which a Higgs boson of mass 130 GeV is produced by vector

boson fusion and decays into ττ . The event generator was Herwig++ version 2.5.0 [23, 24],

with parton showering, multiple parton interactions, hadronization and the built-in τ -decay

package [25]. The detector simulation was Delphes version 1.9 [26] with its τ -identification

algorithm and the ATLAS simulation card. Vertex information is not provided by Delphes,

so we used the hadron-level positions from Herwig++ after gaussian smearing with the

r.m.s. values expected for the ATLAS experiment [8] (10.5 µm for the impact parameter).

For the analysis, we demanded two τ -tagged hadronic jets with pT > 10 GeV and |η| < 2,

resulting in 1467 events remaining after cuts.

Figure 7 shows the Higgs mass reconstructed from the detector-level data using the

above method. All solutions with positive real parts of both reconstructed neutrino energies

are included. We see that after resolution smearing most of the solutions are complex,

but the mass resolution from taking their real parts is just as good as that of the real

solutions, and substantially better than that of the collinear approximation. Furthermore,

because each solution represents a full reconstruction of the kinematics, there may be scope

for further improvement by weighting solutions according to the relevant decay matrix

elements.

4 Discussion and conclusions

Reconstruction of missing energy events may be important for many physics analyses at

colliders. Even in the Standard Model, missing energy is ubiquitous, in the form of neutri-

nos, which are invisible in the detectors. Reconstruction of Standard Model events may be

useful for, for example, improved measurements of the top quark mass, or for identifying

the presence of spin correlations in pair production of top quarks.

Reconstruction may prove to be even more important for physics beyond the Standard

Model, not only because we hope to see missing energy in events involving dark matter
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Figure 7. Higgs mass reconstructed from simulated detector-level h → ττ events using impact

parameter information, compared with the collinear approximation.

particles, but also because it is not so easy in the case of new physics to specify the signal

hypothesis, that is to say, the lagrangian.

A significant complication affecting reconstruction of energies, momenta, and masses

in missing energy events at colliders is the presence of multiple solutions. As we have

seen, the number of solutions can be large (sixteen in one of the examples we considered).

This is compounded by the presence of combinatorial ambiguities and measurement errors,

which further increase the number of solutions and make it less easy to decide which of the

multiple solutions is the correct one.

In the worst case scenario, one would have to accept all solutions, correct or incorrect,

real or complex, with the risk that the “signal” of correct solutions would be overwhelmed

by the “background” of incorrect solutions. Here, we have shown that this problem is

mitigated by the existence of mechanisms by which the incorrect solutions are correlated

with the correct ones. Specifically, we found that correct and incorrect solutions may

coincide in the limit that intermediate masses in cascade decay chains either are negligible,

or are degenerate with the masses of particles further up the chain, such that the emitted

particles are either collinear, or soft, respectively. Furthermore, these same limits can

also lead to combinatorial ambiguities becoming irrelevant, in the sense that the same

solutions are obtained before and after a permutation of particles. The correlations between

correct and incorrect solutions, which are perfect at either end of the interval of possible

intermediate particle masses, persist throughout the intermediate mass interval.
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We saw that these phenomena have a natural description in terms of the theory of

Riemann surfaces, and studied several examples relevant to colliders, for processes both in

and beyond the Standard Model. We hope that our results provide some insight into the

general problem of reconstructing events with missing energy and that they will be useful

to those who seek to do so in today’s colliders.

More specifically, we have shown that the closeness of correct and incorrect solutions

means that complex solutions can occur even in the presence of small measurement errors.

Whilst existing analyses discard complex solutions (on the grounds that they must corre-

spond to events with large mismeasurements) we recommend that future analyses retain

all solutions, with a consequent increase in the available statistics. As discussed in the

introduction and section 3.4, the ongoing searches at the LHC for Higgs bosons in decays

to pairs of τ leptons would seem to be a good place to begin.
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