1,705 research outputs found

    Cracking the membrane lipid code.

    Get PDF
    Why has nature acquired such a huge lipid repertoire? Although it would be theoretically possible to make a lipid bilayer fulfilling barrier functions with only one glycerophospholipid, there are diverse and numerous different lipid species. Lipids are heterogeneously distributed across the evolutionary tree with lipidomes evolving in parallel to organismal complexity. Moreover, lipids are different between organs and tissues and even within the same cell, different organelles have characteristic lipid signatures. At the molecular level, membranes are asymmetric and laterally heterogeneous. This lipid asymmetry at different scales indicates that these molecules may play very specific molecular functions in biology. Some of these roles have been recently uncovered: lipids have been shown to be essential in processes such as hypoxia and ferroptosis or in protein sorting and trafficking but many of them remain still unknown. In this review we will discuss the importance of understanding lipid diversity in biology across scales and we will share a toolbox with some of the emerging technologies that are helping us to uncover new lipid molecular functions in cell biology and, step by step, crack the membrane lipid code

    Diagnosis of failures in solar plants based on performance monitoring

    Get PDF
    Photovoltaic (PV) solar energy has become a reference in electrical generation. The plants currently installed, and those planned have a huge capacity and occupy large areas. The increase in size of the plants presents new challenges in operation and maintenance areas, such as the optimization of the number of sensors installed, large data management and the reduction of the timework in maintenance. The aim of this paper is to show a methodology, to diagnose failures, based on the measured data in the plant. The methodology used is supervised regression machine learning and comparison algorithms. This methodology allows the study of the sensors, the inverters, the joint boxes and the power reduction caused by soiling. The result would allow the detection of around 1-5% of production loss in the plant. The algorithms have been tested with real data of PV plants, and have detected common failures such as production drops in strings and losses due to soiling

    T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy.

    Get PDF
    Cancer immunotherapy has great promise, but is limited by diverse mechanisms used by tumors to prevent sustained antitumor immune responses. Tumors disrupt antigen presentation, T/NK-cell activation, and T/NK-cell homing through soluble and cell-surface mediators, the vasculature, and immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells. However, many molecular mechanisms preventing the efficacy of antitumor immunity have been identified and can be disrupted by combination immunotherapy. Here, we examine immunosuppressive mechanisms exploited by tumors and provide insights into the therapies under development to overcome them, focusing on lymphocyte traffic

    Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samples

    Get PDF
    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation behaviour in an inhomogeneous yet carefully controlled shear-loaded region of double-notched TRIP and dual-phase (DP) steel samples. A detailed powder analysis has been performed to simultaneously monitor the evolution of the phase fraction and the changes in average carbon concentration of metastable austenite together with the local strain components in the constituent phases as a function of the macroscopic stress and location with respect to the shear band. The metastable retained austenite shows a mechanically induced martensitic transformation in the localized shear zone, which is accompanied by an increase in average carbon concentration of the remaining austenite due to a preferred transformation of the austenite grains with the lowest carbon concentration. At the later deformation stages the geometry of the shear test samples results in the development of an additional tensile component. The experimental strain field within the probed sample area is in good agreement with finite element calculations. The strain development observed in the low-alloyed TRIP steel with metastable austenite is compared with that of steels with the same chemical composition containing either no austenite (a DP grade) or stable retained austenite (a TRIP grade produced at a long bainitic holding time). The transformation of metastable austenite under shear is a complex interplay between the local microstructure and the evolving strain fields

    Ultrastructure of COPII vesicle formation in yeast characterized by correlative light and electron microscopy

    Get PDF
    Traffic of proteins out of the endoplasmic reticulum (ER) is driven by the COPII coat, a layered protein scaffold that mediates the capture of cargo proteins and the remodeling of the ER membrane into spherical vesicular carriers. Although the components of this machinery have been genetically defined, and the mechanisms of coat assembly extensively explored in vitro, understanding the physical mechanisms of membrane remodeling in cells remains a challenge. Here we use correlative light and electron microscopy (CLEM) to visualize the nanoscale ultrastructure of membrane remodeling at ER exit sites (ERES) in yeast cells. Using various COPII mutants, we have determined the broad contribution that each layer of the coat makes to membrane remodeling. Our data suggest that inner coat components define the radius of curvature, whereas outer coat components facilitate membrane fission. The organization of the coat in conjunction with membrane biophysical properties determines the ultrastructure of vesicles and thus the efficiency of protein transport.</p

    Ultrastructure of COPII vesicle formation in yeast characterized by correlative light and electron microscopy

    Get PDF
    Traffic of proteins out of the endoplasmic reticulum (ER) is driven by the COPII coat, a layered protein scaffold that mediates the capture of cargo proteins and the remodeling of the ER membrane into spherical vesicular carriers. Although the components of this machinery have been genetically defined, and the mechanisms of coat assembly extensively explored in vitro, understanding the physical mechanisms of membrane remodeling in cells remains a challenge. Here we use correlative light and electron microscopy (CLEM) to visualize the nanoscale ultrastructure of membrane remodeling at ER exit sites (ERES) in yeast cells. Using various COPII mutants, we have determined the broad contribution that each layer of the coat makes to membrane remodeling. Our data suggest that inner coat components define the radius of curvature, whereas outer coat components facilitate membrane fission. The organization of the coat in conjunction with membrane biophysical properties determines the ultrastructure of vesicles and thus the efficiency of protein transport.</p

    A high-frequency digitiser system for real-time analysis of DC grids with DC and AC power quality triggering

    Get PDF
    The presence of DC grids in distribution networks is being increased nowadays and is expected to be quite relevant in a near future, due to several advantages compared to traditional AC systems. Regardless of this, Power Quality in DC grids (DC PQ) (voltage variations, transients, spectral components, etc.) still remains not properly considered and there is a lack of reference normative documents such as standards, application guides or technical reports for their application. In this context, it is necessary to obtain more experience on real measurements, in order to define appropriate DC PQ parameters and limits that assess a reliable operation of the whole power network and eventually lead to establishing a reference frame acceptable for both generation sources and final users. In this work, a novel high frequency (up to 4 MS/s) digitiser system is presented for the study of DC PQ events. The system is designed to acquire waveforms with triggers fired by events in both DC and AC signals. The captured signals are pre-processed in real-time to be able to recover pre-trigger information stored in memory. The system was installed in a real DC micro-grid and configured to take data in an unattended way. Additionally, the results of the first months of data acquisition are presented

    In-depth analysis of single-diode model parameters from manufacturer’s datasheet

    Get PDF
    The objective of this paper is to determine all the possible combinations of the five parameters of the single-diode model (SDM) of a photovoltaic panel when only the following three important points (remarkable points) of a IeV curve, namely, short circuit, maximum power and open circuit points, are available, usually from manufacturer’s datasheet. In this work, four of the five parameters of the SDM are expressed as explicit functions of the remaining one. Taking advantage of this, the monotony of these functions has been studied and the intervals where the corresponding parameters belong have been determined, that is, the domain of the parameters, in terms exclusively of the remarkable points. Using these functions, a unique SDM solution can be also easily determined if an extra data or equation is available. A possible application of this study is to validate if an extra equation is compatible with the set of equations obtained from the remarkable points. The results presented in this paper have been tested with a database gathering information of 8835 datasheets included in the Energy Commission’s Solar Equipment Lists. Comparisons have also been made with other works which have tried to obtain the SDM parameters only with datasheet information
    corecore