175 research outputs found

    Diel variability and community metabolism in African soda lakes

    Get PDF
    Information theory based indices of predictability were used to quantify seasonal differences in diel variability of dissolved oxygen and temperature in Lakes Elmenteita and Sonachi. Predictability of patterns in diel variability was high in both lakes for water temperatures and dissolved oxygen. Community metabolism was measured in Lake Elmenteita, a shallow, Kenyan soda lake based on a series of vertical profiles of dissolved oxygen and temperature measured about monthly over several days for 13 periods from February 1973 to May 1974. Variations in areal oxygen content at successive intervals throughout each day and night were corrected for air-water oxygen exchange to calculate net free water oxygen change. Maximal rates of increase usually occurred in late morning or early afternoon. Rates of change were summed to determine night-time respiration and gross photosynthesis

    Strategies for detection of floodplain inundation with multi-frequency polarimetric SAR

    Get PDF
    Mapping of floodplain inundation patterns is a key element in developing hydrological and biogeochemical models for large tropical river basins such as the Amazon. Knowledge of the time sequence of inundation is necessary to determine both water routing and biogenic gas fluxes. Synthetic Aperture Radar (SAR) is uniquely suited for this application because of its ability to penetrate cloud cover and, in many cases, to detect flooding beneath a forest or herbaceous canopy. A procedure for discriminating flooded forest, flooded herbaceous vegetation, and open water from other cover types for a coastal wetland site on the lower Altamaha floodplain, Georgia, emphasizing robust classifiers that are not site-specific is currently being developed

    An algorithm for chlorophyll using first difference transformations of AVIRIS reflectance spectra

    Get PDF
    Experimental results have shown the existence of a strong relationship between chlorophyll alpha concentration and remote sensing reflectance measured at lake level with a high resolution spectroradiometer. The objective of our study was to investigate the relationship between surface chlorophyll alpha concentration at Mono Lake and water reflectance retrieved from Airborne Visible - Infrared Imaging Spectrometer (AVIRIS) data obtained in october 7, 1992. AVIRIS data were atmospherically corrected as described by Green et al. A description of the lake-level sampling is found in Melack and Gastil. The relationship between chlorophyll concentration and both the single band reflectance and the first difference transformation of the reflectance spectra for the first 40 AVIRIS spectral bands (400 nm to 740 nm) was examined. The relationship was then used to produce a map of the surface chlorophyll distribution

    Methane flux from the Central Amazonian Floodplain

    Get PDF
    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49% of the flux from open water, 54% of that from flooded forests, and 64% of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12% of the estimated global natural sources of methane

    Effect of benthic boundary layer transport on the productivity of Mono Lake, California

    Get PDF
    The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer (BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological model validated against field data. The coupled model enabled us to differentiate between the role of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to sustain primary productivity. A 4-year period (1991–1994) was simulated in which recycled nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during stratification with an increase in primary production of 6% and secondary production of 5%. Although the estimated impact of BBL transport on the productivity of Mono Lake was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active

    Comparison of modeled backscatter with SAR data at P-band

    Get PDF
    In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested

    Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil

    Get PDF
    Extensive interfluvial wetlands occur in the upper Negro River basin (Brazil) and contain a mosaic of vegetation dominated by emergent grasses and sedges with patches of shrubs and palms. To characterize the release of carbon dioxide and methane from these habitats, diffusive and ebullitive emissions and transport through plant aerenchyma were measured monthly during 2005 in permanently and seasonally flooded areas. CO2 emissions averaged 2193 mg C m-2 day-1. Methane was consumed in unflooded environments and emitted in flooded environments with average values of -4.8 and 60 mg C m-2 day-1, respectively. Bubbles were emitted primarily during falling water periods when hydrostatic pressure at the sediment-water interface declined. CO2 and CH4 emissions increased when dissolved O2 decreased and vegetation was more abundant. Total area and seasonally varying flooded areas for two wetlands, located north and south of the Negro River, were determined through analysis of synthetic aperture radar and optical remotely sensed data. The combined areas of these two wetlands (3000 km2) emitted 1147 Gg C year-1 as CO2 and 31 Gg C year-1 as CH4. If these rates are extrapolated to the area occupied by hydromorphic soils in the upper Negro basin, 63 Tg C year-1 of CO2 and 1.7 Tg C year-1 as CH4 are estimated as the regional evasion to the atmosphere. © 2010 The Author(s)

    Global Methane Emissions From Wetlands, Rice Paddies, and Lakes

    Get PDF
    The current concentration of atmospheric methane is 1774±1.8 parts per billion, and it accounts for 18% of total greenhouse gas radiative forcing [Forster et al., 2007]. Atmospheric methane is 22 times more effective, on a per-unit-mass basis, than carbon dioxide in absorbing long-wave radiation on a 100-year time horizon, and it plays an important role in atmospheric ozone chemistry (e.g., in the presence of nitrous oxides, tropospheric methane oxidation will lead to the formation of ozone). Wetlands are a large source of atmospheric methane, Arctic lakes have recently been recognized as a major source [e.g., Walter et al., 2006], and anthropogenic activities--such as rice agriculture--also make a considerable contribution

    Relating P-band AIRSAR backscatter to forest stand parameters

    Get PDF
    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area
    • …
    corecore