791 research outputs found

    Little Evidence for Demasculinization of the \u3ci\u3eDrosophila X\u3c/i\u3e Chromosome among Genes Expressed in the Male Germline

    Get PDF
    Male-biased genes—those expressed at higher levels in males than in females—are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First,using genome-wide gene expression data from 20 tissues,we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues,we recover a statistical under representation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally “demasculinizing” the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes

    Skeleton Cave, Leigh Woods, Bristol

    Get PDF
    An account is given of the discovery and excavation of this small cave in the 1960s. It is recorded that archaeological finds were made, but of these, only a single human mandible can now be traced. Radiocarbon dating shows the specimen to be early Neolithic in age; a metrical analysis was less conclusive.http://www.ubss.org.uk/resources/proceedings/vol27/UBSS_Proc_27_2_197-209.pd

    Simple mechanism for a positive exchange bias

    Full text link
    We argue that the interface coupling, responsible for the positive exchange bias (HE) observed in ferromagnetic/compensated antiferromagnetic (FM/AF) bilayers, favors an antiferromagnetic alignment. At low cooling field this coupling polarizes the AF spins close to the interface, which spin configuration persists after the sample is cooled below the Neel temperature. This pins the FM spins as in Bean's model and gives rise to a negative HE. When the cooling field increases, it eventually dominates and polarizes the AF spins in an opposite direction to the low field one. This results in a positive HE. The size of HE and the crossover cooling field are estimated. We explain why HE is mostly positive for an AF single crystal, and discuss the role of interface roughness on the magnitude of HE, and the quantum aspect of the interface coupling.Comment: 10 pages, 2 figures, to be published on May 1 issue of PR

    Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    Get PDF
    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution

    Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Drosophila simulans Clade Species

    Get PDF
    The three fruitfly species of the Drosophila simulans clade— D. simulans, D. mauritiana, and D. sechellia— have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane’s rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis

    Sex Chromosome-Specific Regulation in the \u3ci\u3eDrosophila\u3c/i\u3e Male Germline But Little Evidence for Chromosomal Dosage Compensation or Meiotic Inactivation

    Get PDF
    The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation—the equalization of X chromosome gene expression in males and females— and meiotic sex chromosome inactivation (MSCI)—the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila

    Metastable Random Field Ising model with exchange enhancement: a simple model for Exchange Bias

    Get PDF
    We present a simple model that allows hysteresis loops with exchange bias to be reproduced. The model is a modification of the T=0 random field Ising model driven by an external field and with synchronous local relaxation dynamics. The main novelty of the model is that a certain fraction f of the exchange constants between neighbouring spins is enhanced to a very large value J_E. The model allows the dependence of the exchange bias and other properties of the hysteresis loops to be analyzed as a function of the parameters of the model: the fraction f of enhanced bonds, the amount of the enhancement J_E and the amount of disorder which is controlled by the width sigma of the Gaussian distribution of the random fields.Comment: 8 pages, 11 figure

    Speech-language Pathology Services Delivered by Telehealth in a Rural Educational Setting: the School’s Perspective

    Get PDF
    Introduction: Access to speech-language pathology services for children in rural and remote communities is often limited. Telehealth is increasingly used to provide these services to schools, demonstrating high satisfaction with both service providers and recipients, but the requirements for successful program implementation are as yet unclear. We aimed to explore the implementation requirements for a telehealth speech-language pathology service for children from the perspective of a rural school. Methods: A qualitative approach, supplemented by program activity data, was used to understand the experiences and perceptions of the benefits, limitations, enablers and barriers of a telehealth speech-language pathology program delivered to a school servicing approximately 400 children in a small rural town in the state of Queensland, Australia. Thematic analysis was conducted of transcripts of individual semi-structured interviews with nine school teaching staff and field notes of informal discussions regarding 85 speech-language pathology telehealth sessions (n = 9 children) during program establishment and implementation. Results: The speech-language pathology telehealth service was acceptable to teaching staff at the rural school, who cited improved access, the suitability of the technology for child engagement, and perceived effectiveness. Implementation issues were highlighted as critical to program success and scalability, particularly staff workload, technological issues, communication processes, and sustainability. Conclusion: School-based speech-language pathology services delivered via telehealth were perceived as a suitable way of increasing access for children by rural school staff. Future implementations of telehealth speech-language pathology programs should prospectively consider workload implications and develop strategies to communicate with and involve school staff.     &nbsp

    Sex Chromosome-Specific Regulation in the Drosophila Male Germline But Little Evidence for Chromosomal Dosage Compensation or Meiotic Inactivation

    Get PDF
    Suppression of X-linked transgene reporters versus normal expression of endogenous X-linked genes suggest a novel form of X chromosome-specific regulation in Drosophila testes, instead of sex chromosome dosage compensation or meiotic inactivation

    Self-control in decision-making involves modulation of the vmPFC valuation system

    Get PDF
    Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non–self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC
    • 

    corecore