36 research outputs found

    RRS Discovery Cruise 360, 19 Jan-02 Feb 2011. Trials of the Autosub LR AUV, HyBIS, PELAGRA, Ellsworth Camera and MYRTLE-X Lander systems

    No full text
    There were five main objectives for the trials cruise: The first tests of the Autosub Long Range AUV, testing of the HyBIS video guided grab system, testing of the MYRTLE-X Lander systems, testing of a deep camera system for the Lake Ellsworth probe and test deployments of the PELAGRA neutrally buoyant sediment capture drifters.The working area was about 300 miles south west of the Canary Islands, in international waters, over benthic plains of 4000 m depth, with some tests of the video systems over a isolated sea mount rising to 1200 m depth. Most of the objectives of the cruise where met, with successful diving and control of the Autosub LR, tests of the HyBIS and Ellsworth camera systems, and 3 deployments and recoveries of two PELAGRA floats. Several wire tests of MYRTLE-X systems were carried out, predominantly successful, but concerns over the release system prevented a deployment of the lander

    On the reliability of the Autosub autonomous underwater vehicle

    Get PDF
    As autonomous underwater vehicles (AUVs) enter operational service an assessment of their reliability is timely. Using the Autosub AUV as an example, several design issues affecting reliability are discussed, followed by an analysis of recorded faults. Perhaps contrary to expectations, failures rarely involved the autonomous nature of the vehicle. Rather, faults were typical of those that occur with any complex item of marine electromechanical equipment. A statistical analysis showed that the failure rate decreased with distance travelled- an indicator that an AUV underway, submerged, is at less risk of a fault developing than during other phases of a mission. 1

    First direct measurements of hydraulic jumps in an active submarine density current

    Get PDF
    For almost half a century, it has been suspected that hydraulic jumps, which consist of a sudden decrease in downstream velocity and increase in flow thickness, are an important feature of submarine density currents such as turbidity currents and debris flows. Hydraulic jumps are implicated in major seafloor processes, including changes from channel erosion to fan deposition, flow transformations from debris flow to turbidity current, and large-scale seafloor scouring. We provide the first direct evidence of hydraulic jumps in a submarine density current and show that the observed hydraulic jumps are in phase with seafloor scours. Our measurements reveal strong vertical velocities across the jumps and smaller than predicted decreases in downstream velocity. Thus, we demonstrate that hydraulic jumps need not cause instantaneous and catastrophic deposition from the flow as previously suspected. Furthermore, our unique data set highlights problems in using depth-averaged velocities to calculate densimetric Froude numbers for gravity currents

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    RRS Discovery Cruise 343, 27 Sep-15 Oct 2009. Deepwater trials of the Autosub6000 AUV, HyBIS, and telemetry systems

    Get PDF
    There were 3 main objectives for the trials cruise: Testing of the Autosub6000 AUV, the HyBIS system (both supported by personnel from the National Oceanography Centre, Southampton), and acoustic and satellite telemetry systems (Proudman Oceanographic Laboratory, Liverpool). Specifically, the Autosub6000 trials were to test: the AUV, its systems and control to as deep as possible up to 6000 m, a new collision avoidance system based on scanned sonar collision avoidance sensor, and recently installed sensors (dual CT, LSS EH probe, magnetometer, Multibeam sonar sensors). The objectives of the HyBIS trials were to test the video guided grab system to as deep as possible, and to gain further operational experience. The objectives of the telemetry systems trials were to develop and test remote measurement technologies, deep water communication systems and a compact version of the MYRTLE (multi-year return tide level equipment) long term deep water recoverable lander. The cruise began with initial tests of the Autosub6000 AUV in the Celtic deep, followed by deep tests of the AUV to 5600m on the Iberian Abyssal plain. The majority of the work for the Autosub6000, HyBIS and the POL telemetry tests were carried out further south over and around the Casablanca seamount. A high percentage of the tests were successful, with Autosub6000 reaching a depth of 5600m

    RRS Discovery Cruise 323, 19 Sep-03 Oct 2007. First deepwater trials of the Autosub6000 AUV

    Get PDF
    The main objective of RRS Discovery Cruise 323 was to carry out the first deep sea field trials of the National Oceanography Centre, Southampton (NOCS) developed Autosub6000 Autonomous Underwater Vehicle. In addition, we took the opportunity, working with engineers from Proudman Oceanographic Laboratory (POL), to carry out deep water testing of integrated two way acoustic and satellite communications systems. NOCS benthic biologists also carried out seabed sampling operations at the base of the Whittard and King Arthur Canyons. As far as the Autosub6000 operations were concerned, the objectives of the cruise were completely met, with 8 dives, lasting 60 hours total and running for 278 km, to a maximum depth of 4553 m, and without faults. The POL tests of the acoustic and satellite systems were a success, and the NOCS benthic biologists successfully obtained Mega core samples at the base of the Whittard canyon

    RRS Discovery Cruise 360, 19 Jan-02 Feb 2011. Trials of the Autosub LR AUV, HyBIS, PELAGRA, Ellsworth Camera and MYRTLE-X Lander systems

    Get PDF
    There were five main objectives for the trials cruise: The first tests of the Autosub Long Range AUV, testing of the HyBIS video guided grab system, testing of the MYRTLE-X Lander systems, testing of a deep camera system for the Lake Ellsworth probe and test deployments of the PELAGRA neutrally buoyant sediment capture drifters. The working area was about 300 miles south west of the Canary Islands, in international waters, over benthic plains of 4000 m depth, with some tests of the video systems over a isolated sea mount rising to 1200 m depth. Most of the objectives of the cruise where met, with successful diving and control of the Autosub LR, tests of the HyBIS and Ellsworth camera systems, and 3 deployments and recoveries of two PELAGRA floats. Several wire tests of MYRTLE-X systems were carried out, predominantly successful, but concerns over the release system prevented a deployment of the lander

    Challenges of using an AUV to find and map hydrothermal vent sites in deep and rugged terrains

    Get PDF
    In March 2010, the Autosub6000 AUV embarked on a cruise to discover, locate and map hydrothermal vent sites in an active spreading centre, the Cayman trough in the Caribbean sea. The environment provided the challenge of steep and rugged terrain together with deep water (in places greater than 5000 m). Autosub6000 is a flight class, hydrodynamically shaped AUV, with good endurance capability, making it well suited for searching for plume signals and mapping terrain over the required moderately large areas. However, it must fly at a forward speed greater than 0.8 ms-1 to achieve control, and so it requires a capable forward look collision avoid capability. Another potential challenge is navigation. To make best use of ship time, Autosub6000 missions are commonly conducted with neither the support ship in attendance, nor an acoustic transponder long baseline network. Hence positioning is dependent upon the AUV autonomous navigation (aided by a position fix after the AUV’s descent to within ADCP bottom tracking range of the seabed). For the cruise on the UK research ship RRS James Cook, the AUV was equipped with sensors for EH (redox potential), turbidity, CTD, tri axis magnetometer, and an EM2000 multibeam sonar. The paper describes the Autosub6000 vehicle, its systems, capabilities, the missions it undertook in the deep Caribbean sea, and the discoveries it made. The missions, although ultimately very successful, were not without problems, with, for example, the steep seabed slopes, at times affecting the accuracy for the navigation system. The paper will also discuss these issues and how they might be addressed in the future. <br/
    corecore