27 research outputs found

    Defining mangrove-fisheries: A typology from the Perancak Estuary, Bali, Indonesia.

    Get PDF
    This study develops a definition of what mangrove-fisheries can encompass, incorporating a broad range of their possible characteristics. A detailed case study was conducted to develop a typology of mangrove-fishing in the Perancak Estuary, Bali, Indonesia, using interview surveys to investigate the fishing activities associated with mangroves. This case study demonstrated the complexity that a mangrove-fishery can entail, where fishing is connected to the mangrove forest by fishers of multiple sectors, functions, locations and temporal scales. Through a comparison with other mangrove-fishing communities in Bali, it also highlighted that mangrove-fisheries are variable even when in close proximity. With particular reference to this case study, a framework was developed as a flexible tool for identifying the multiple dimensions of a mangrove-fishery in a local context. Following this framework should encourage researchers and managers to look outside of the groups of fishers traditionally expected to benefit from mangrove fishing. This will enable the development of a broader definition of mangrove-fisheries in a site specific way. Identifying the full scope of fishers that contribute to or benefit from a mangrove-fishery is the first step towards building management measures that reflect the interests of groups of fishers that may otherwise remain under-represented. This is in line with international efforts for sustainability, especially in promoting small-scale fishers' access to sustainable resources under the UN Sustainable Development Goals

    Positive futures for Mediterranean wetlands biodiversity and ecosystem services

    Get PDF
    To change the current negative trend of biodiversity and related ecosystem services, the actors that are capable of changing either policies or daily management of ecosystems or protected areas need to know what their biggest challenges are and how what the impact could be of changes in their current approaches. However, information on what possible futures might bring under the impact of global change and different policy and management measures is a generally recognized knowledge gap. Wetlands only occupy 9% of the land globally, but they provide proportionally significantly more ecosystem services, which are also of high importance (e.g. water provision, regulation of hazards). Especially in regions such as the Mediterranean Basin where wetland extent is decreasing while the human population is increasing, the importance of wetlands for ecosystem services and biodiversity is increasingly disproportionate. Meanwhile, ongoing social and political instability in the region means progress towards Sustainable Development Goals is not a trivial challenge. Information on how policy and management measures could improve the outlook for Mediterranean wetlands biodiversity and ecosystem services is however lacking.This study uses a systematic literature review to identify the pathways, conditions and criteria for positive developments of Mediterranean wetlands under the current global change context. The study is undertaken by the Scientific and Technical Network of MedWet. MedWet is a Mediterranean initiative of 27 Mediterranean countries that have signed the Ramsar convention on the conservation of Mediterranean wetlands.The information from this study is used to develop specific recommendations towards positive futures (e.g. water security, safe coasts). These recommendations are not primarily directed to global platforms, but rather to national governments, NGOs and local citizens’ organizations. These parties are most directly concerned with the benefits from a sustainable development path and the safeguarding of related ecosystem services and biodiversity

    Reply to “Global coastal wetland expansion under accelerated sea-level rise is unlikely”

    Get PDF
    We thank Törnqvist et al. for engaging with our modelling study on the future response of global coastal wetlands to sea-level rise (SLR) and their careful and critical discussion of the presented methods and results. However, we disagree with their suggestion that our modelling approach is inadequate, a claim which relies on two arguments: (1) they argue that our results are inconsistent with the “A/S (accommodation versus sediment supply) theory”; (2) they refer to coastal Louisiana as a case example where our modelling results would deviate from historic observations and future projections of coastal wetland change. However, below we will demonstrate that Törnqvist et al.’s application of the A/S theory is not valid to predict changes in coastal wetland area, and that our global predictions are in line with regional observations and projections for coastal Louisiana and the wider region of the Gulf of Mexico. Taking coastal Louisiana as an example, Törnqvist et al. highlight that ca. 6000 km2 of land are expected to be lost over the coming 50 years due to RSLR and the erosion/drowning of coastal wetlands. However, this figure cannot directly be compared to our results, because it does not account for upland areas being converted to wetlands as sea level rises; it only accounts for seaward losses due to erosion and/or drowning with associated shoreline retreat and land loss3. Equivalent scenario runs of our model (i.e. only considering wetland accretion, but no inland migration) result in a comparable projected wetland loss in Louisiana of ca. 6,900 km2 until 2100, under the medium SLR scenario (RCP4.5). This loss is triggered by insufficient sediment availability for the marshes to keep pace with SLR in situ. Hence, Törnqvist et al.’s claim that our model underestimates future wetland loss on the US Gulf coast is incorrect. Rather, we demonstrate that our global-scale model predictions of wetland losses are comparable to regional estimates

    A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals

    Get PDF
    Achieving the United Nations’ 17 Sustainable Development Goals (SDGs) results in many ecological, social, and economic consequences that are inter-related. Understanding relationships between sustainability goals and determining their interactions can help prioritize effective and efficient policy options. This paper presents a framework that integrates existing knowledge from literature and expert opinions to rapidly assess the relationships between one SDG goal and another. Specifically, given the important role of the oceans in the world's social-ecological systems, this study focuses on how SDG 14 (Life Below Water), and the targets within that goal, contributes to other SDG goals. This framework differentiates relationships based on compatibility (co-benefit, trade-off, neutral), the optional nature of achieving one goal in attaining another, and whether these relationships are context dependent. The results from applying this framework indicate that oceans SDG targets are related to all other SDG goals, with two ocean targets (of seven in total) most related across all other SDG goals. Firstly, the ocean SDG target to increase economic benefits to Small Island Developing States (SIDS) and least developed countries for sustainable marine uses has positive relationships across all SDGs. Secondly, the ocean SDG target to eliminate overfishing, illegal and destructive fishing practices is a necessary pre-condition for achieving the largest number of other SDG targets. This study highlights the importance of the oceans in achieving sustainable development. The rapid assessment framework can be applied to other SDGs to comprehensively map out the subset of targets that are also pivotal in achieving sustainable development

    State of the knowledge on European marine habitat mapping and degraded habitats

    Get PDF
    During the last decades, several EU Directives and other international legislations have generated a large number of national initiatives (e.g. marine atlases) and EU programmes on habitat mapping. Nevertheless, the outcomes of these initiatives are fragmented and, to our best knowledge, to date there is no systematic assessment regarding the nature, quality and availability of information across the European seas. One of the main goals of the MERCES project (www.merces-project.eu) is to produce a census of available maps of European key marine habitats, along with their degradation status and restoration potential in the European Seas, providing a potential basis for future discussion on restoration activities. MERCES is producing a census of European marine key habitat maps, degraded habitat maps and investigating key habitat restoration potential. To do this MERCES has i. reviewed known existing habitat maps of European regional seas and provided source citations for all of the information ii. reviewed degraded habitat map resources by regional sea and habitat type (e.g. seagrass, macroalgae, coral gardens, sponge aggregations, seamounts, vents), associated habitat deterioration (e.g. extent of decline), the most common human activities and pressures reported, and the recovery and restoration potential of these habitats iii. reviewed 6 key habitats (including kelp and macroalgal forests, seagrass meadows, coralligenous assemblages, coral gardens and deep-sea bottom communities) and linked 6 major habitat features, such as dynamics, connectivity, structural complexity and vulnerability, to consequences for restoration and the likelihood of restoration succes

    Current marine pressures and mechanisms driving changes in marine habitats

    Get PDF
    Human activities and the resultant pressures they place on the marine environment have been widely demonstrated to contribute to habitat degradation, therefore, their identification and quantification is an essential step towards any meaningful restoration effort. The overall scope of MERCES Deliverable 1.2 is to review current knowledge regarding the major marine pressures placed upon marine ecosystems in EU waters and the mechanisms by which they impact habitats in order to determine potential restoration pathways. An understanding of their geographical distribution is critical for any local assessment of degradation, as well as for planning conservation and restoration actions. This information would ideally be in the form of maps, which: (a) compile single or multiple activities and pressures over broad scales, integrating and visualizing available data and allowing direct identification of aggregations as well as gaps and (b) may be overlaid with habitat maps (or any other map layer containing additional information), thus combining different data levels and producing new information to be used for example when implementing EU policies. The deliverable also documents typical example habitat case studies, the prominent impacts and consequences of activities and pressures towards the identification of possible restoration or mitigation actions. Finally the deliverable discusses pressures, assessments, marine spatial planning and blue growth potential. Activities and pressures are used in a strict sense, where marine activities are undertaken to satisfy the needs of societal drivers (e.g. aquaculture or tourism) and pressures are considered to be the mechanism through which an activity has an actual or potential effect on any part of the ecosystem (e.g. for demersal trawling activity, one pressure would be abrasion of the seabed). Habitats are addressed using a nested approach from large-scale geological features (e.g. shallow soft bottoms) to species-characterised habitats (e.g. Posidonia meadows) because of the way they are referred to in current policy documents which lack standard and precise definitions

    Habitat features and their influence on the restoration potential of marine habitats in Europe

    Get PDF
    To understand the restoration potential of degraded habitats, it is important to know the key processes and habitat features that allow for recovery after disturbance. As part of the EU (Horizon 2020) funded MERCES project, a group of European experts compiled and assessed current knowledge, from both past and ongoing restoration efforts, within the Mediterranean Sea, the Baltic Sea, and the North-East Atlantic Ocean. The aim was to provide an expert judgment of how different habitat features could impact restoration success and enhance the recovery of marine habitats. A set of biological and ecological features (i.e., life-history traits, population connectivity, spatial distribution, structural complexity, and the potential for regime shifts) were identified and scored according to their contribution to the successful accomplishment of habitat restoration for five habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous assemblages and cold-water coral habitats. The expert group concluded that most of the kelp forests features facilitate successful restoration, while the features for the coralligenous assemblages and the cold-water coral habitat did not promote successful restoration. For the other habitats the conclusions were much more variable. The lack of knowledge on the relationship between acting pressures and resulting changes in the ecological state of habitats is a major challenge for implementing restoration actions. This paper provides an overview of essential features that can affect restoration success in marine habitats of key importance for valuable ecosystem services

    Where Is More Important Than How in Coastal and Marine Ecosystems Restoration

    Full text link
    Restoration is considered an effective strategy to accelerate the recovery of biological communities at local scale. However, the effects of restoration actions in the marine ecosystems are still unpredictable.We performed a global analysis of published literature to identify the factors increasing the probability of restoration success in coastal and marine systems. Our results confirm that the majority of active restoration initiatives are still concentrated in the northern hemisphere and that most of information gathered from restoration efforts derives from a relatively small subset of species. The analysis also indicates that many studies are still experimental in nature, covering small spatial and temporal scales. Despite the limits of assessing restoration effectiveness in absence of a standardized definition of success, the context (degree of human impact, ecosystem type, habitat) of where the restoration activity is undertaken is of greater relevance to a successful outcome than how (method) the restoration is carried out. Contrary to expectations, we found that restoration is not necessarily more successful closer to protected areas (PA) and in areas of moderate human impact. This result can be motivated by the limits in assessing the success of interventions and by the tendency of selecting areas in more obvious need of restoration, where the potential of actively restoring a degraded site is more evident. Restoration sites prioritization considering human uses and conservation status present in the region is of vital importance to obtain the intended outcomes and galvanize further actions

    Human activities and resultant pressures on key European marine habitats: An analysis of mapped resources

    Get PDF
    Human activities exert a wide range of pressures on marine ecosystems, often resulting in the loss of species and degradation of habitats. If effective policies and management practices to restore past damage and reduce future impacts to the marine environment are to be developed, knowledge of the extent, duration and severity of activities and pressures is essential, yet often lacking. As part of the EU H2020 project “Marine Ecosystem Restoration in Changing European Seas”, this study uses an exhaustive review of published records, web resources, and grey literature to comprehensively assess the degree to which human activities and pressures are mapped within European seas. The results highlight a number of limitations and gaps, including: (a) limited geographic coverage at both the regional and sub-regional level; (b) insufficient spatial resolution and accuracy in recorded data for the planning of conservation and restoration actions; (c) a lack of access to the background data and metadata upon which maps are based, thus limiting the potential for synthesis of multiple data sources. Based on the findings, several recommendations for future marine research initiatives arise, most importantly the need for coordinated, geographically extended baseline assessments of the distribution and intensity of human activities and pressures, complying with high-level standardization regarding methodological approaches and the treatment of produced data

    Future response of global coastal wetlands to sea-level rise.

    Get PDF
    The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3. These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.Personal research fellowship of Mark Schuerch (Project Number 272052902) and by the Cambridge Coastal Research Unit (Visiting Scholar Programme). Furthermore, this work has partly been supported by the EU research project RISES-AM- (FP7-ENV-693396)
    corecore