23 research outputs found
Gray’s revised Reinforcement Sensitivity Theory in relation to Attention-Deficit/Hyperactivity and Tourette-like behaviors in the general population
Attention-Deficit/Hyperactivity Disorder (ADHD) and Tourette Syndrome (TS) present as distinct conditions clinically; however, they show comorbidity and inhibitory control deficits have been proposed to underlie both. The role of reinforcement sensitivity in ADHD has been studied previously, but no study has addressed this in relation to TS-like behaviors in the general population. The present study examined these associations within the remit of the revised Reinforcement Sensitivity Theory (rRST). One hundred and thirty-eight participants completed psychometric measures of the rRST, and self-report checklists for ADHD- and TS-like behaviors
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Specific aspects of contemporary triathlon: implications for physiological analysis and performance
Triathlon competitions are performed over markedly different distances and under a variety of technical constraints. In 'standard-distance' triathlons involving 1.5km swim, 40km cycling and 10km running, a World Cup series as well as a World Championship race is available for 'elite' competitors. In contrast, 'age-group' triathletes may compete in 5-year age categories at a World Championship level, but not against the elite competitors. The difference between elite and age-group races is that during the cycle stage elite competitors may 'draft' or cycle in a sheltered position; age-group athletes complete the cycle stage as an individual time trial. Within triathlons there are a number of specific aspects that make the physiological demands different from the individual sports of swimming, cycling and running. The physiological demands of the cycle stage in elite races may also differ compared with the age-group format. This in turn may influence performance during the cycle leg and subsequent running stage.
Wetsuit use and drafting during swimming (in both elite and age-group races) result in improved buoyancy and a reduction in frontal resistance, respectively. Both of these factors will result in improved performance and efficiency relative to normal pool-based swimming efforts. Overall cycling performance after swimming in a triathlon is not typically affected. However, it is possible that during the initial stages of the cycle leg the ability of an athlete to generate the high power outputs necessary for tactical position changes may be impeded. Drafting during cycling results in a reduction in frontal resistance and reduced energy cost at a given submaximal intensity. The reduced energy expenditure during the cycle stage results in an improvement in running, so an athlete may exercise at a higher percentage of maximal oxygen uptake. In elite triathlon races, the cycle courses offer specific physiological demands that may result in different fatigue responses when compared with standard time-trial courses. Furthermore, it is possible that different physical and physiological characteristics may make some athletes more suited to races where the cycle course is either flat or has undulating sections. An athlete's ability to perform running activity after cycling, during a triathlon, may be influenced by the pedalling frequency and also the physiological demands of the cycle stage. The technical features of elite and age-group triathlons together with the physiological demands of longer distance events should be considered in experimental design, training practice and also performance diagnosis of triathletes
The effect of astaxanthin supplementation on performance and fat oxidation during a 40 km cycling time trial
Objectives
This study aimed to investigate whether supplementation with 12 mg⋅day−1 astaxanthin for 7 days can improve exercise performance and metabolism during a 40 km cycling time trial.
Design
A randomised, double-blind, crossover design was employed.
Methods
Twelve recreationally trained male cyclists (VO2peak: 56.5 ± 5.5 mL⋅ kg−1⋅ min−1, Wmax: 346.8 ± 38.4 W) were recruited. Prior to each experimental trial, participants were supplemented with either 12 mg⋅day−1 astaxanthin or an appearance-matched placebo for 7 days (separated by 14 days of washout). On day 7 of supplementation, participants completed a 40 km cycling time trial on a cycle ergometer, with indices of exercise metabolism measured throughout.
Results
Time to complete the 40 km cycling time trial was improved by 1.2 ± 1.7% following astaxanthin supplementation, from 70.76 ± 3.93 min in the placebo condition to 69.90 ± 3.78 min in the astaxanthin condition (mean improvement = 51 ± 71 s, p = 0.029, g = 0.21). Whole-body fat oxidation rates were also greater (+0.09 ± 0.13 g min−1, p = 0.044, g = 0.52), and the respiratory exchange ratio lower (-0.03 ± 0.04, p = 0.024, g = 0.60) between 39–40 km in the astaxanthin condition.
Conclusions
Supplementation with 12 mg day−1 astaxanthin for 7 days provided an ergogenic benefit to 40 km cycling time trial performance in recreationally trained male cyclists and enhanced whole-body fat oxidation rates in the final stages of this endurance-type performance event