19 research outputs found

    Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors.

    Get PDF
    The development of high-performance multifunctional polymer-based electronic circuits is a major step toward future flexible electronics. Here, we demonstrate a tunable approach to fabricate such devices based on rationally designed dielectric super-lattice structures with photochromic azobenzene molecules. These nanodielectrics possessing ionic, molecular, and atomic polarization are utilized in polymer thin-film transistors (TFTs) to realize high-performance electronics with a p-type field-effect mobility (μFET) exceeding 2 cm2 V-1 s-1. A crossover in the transport mechanism from electrostatic dipolar disorder to ionic-induced disorder is observed in the transistor characteristics over a range of temperatures. The facile supramolecular design allows the possibility to optically control the extent of molecular and ionic polarization in the ultrathin nanodielectric. Thus, we demonstrate a 3-fold increase in the capacitance from 0.1 to 0.34 μF/cm2, which results in a 200% increase in TFT channel current

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Charge Injection in High-κ Gate Dielectrics of Single-Walled Carbon Nanotube Thin-Film Transistors

    No full text
    We investigate charge injection into the gate dielectric of single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) having Al<sub>2</sub>O<sub>3</sub> and HfO<sub>2</sub> gate dielectrics. We demonstrate the use of electric field gradient microscopy (EFM) to identify the sign and approximate the magnitude of the injected charge carriers. Charge injection rates and saturation levels are found to differ between electrons and holes and also vary according to gate dielectric material. Electrically, Al<sub>2</sub>O<sub>3</sub> gated devices demonstrate smaller average hysteresis and notably higher average on-state current and p-type mobility than those gated by HfO<sub>2</sub>. These differences in transfer characteristics are attributed to the charge injection, observed <i>via</i> EFM, and correlate well with differences in tunneling barrier height for electrons and holes formed in the conduction and valence at the SWCNT/dielectric interface, respectively. This work emphasizes the need to understand the SWCNT/dielectric interface to overcome charge injection that occurs in the focused field region adjacent to SWCNTs and indicates that large barrier heights are key to minimizing the effect

    Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes

    No full text
    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by <i>in situ</i> and <i>in operando</i> measurements, identifying <i>n</i>-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications
    corecore