74 research outputs found

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Climate-Mediated Changes to Linked Terrestrial and Marine Ecosystems across the Northeast Pacific Coastal Temperate Rainforest Margin

    Get PDF
    Coastal margins are important areas of materials flux that link terrestrial and marine ecosystems. Consequently, climate-mediated changes to coastal terrestrial ecosystems and hydrologic regimes have high potential to influence nearshore ocean chemistry and food web dynamics. Research from tightly coupled, high-flux coastal ecosystems can advance understanding of terrestrial–marine links and climate sensitivities more generally. In the present article, we use the northeast Pacific coastal temperate rainforest as a model system to evaluate such links. We focus on key above- and belowground production and hydrological transport processes that control the land-to-ocean flow of materials and their influence on nearshore marine ecosystems. We evaluate how these connections may be altered by global climate change and we identify knowledge gaps in our understanding of the source, transport, and fate of terrestrial materials along this coastal margin. Finally, we propose five priority research themes in this region that are relevant for understanding coastal ecosystem links more broadly.Ye

    Limited recruitment during relaxation events: Larval advection and behavior in an upwelling system

    No full text
    We capitalized on a long-term record of larval recruitment and a distinctive oceanographic signature to reveal how changes in ocean conditions affect larval advection, behavior, and recruitment in a region of strong, persistent upwelling and recruitment limitation. We repeatedly sampled the vertical and horizontal distribution of a larval assemblage and ocean conditions during infrequent relaxations of prevailing upwelling winds near Bodega Bay, California. During prolonged relaxation events, a poleward, coastal, boundary current imported low-salinity surface waters that were devoid of larvae to the study area. The resident larval assemblage was restricted to cold, saline, bottom waters and pushed offshore while diel vertical migrations were suppressed. Hence, changes in oceanographic conditions strongly affected behaviorally mediated larval distributions, revealing the reason that few species recruit during relaxation events in this region. During relaxation events in upwelling regions, poleward coastal boundary currents will force larvae offshore throughout the water column at small headlands and in seaward-flowing bottom currents at straight coastlines, but recruitment may decrease markedly only near estuaries where few larvae will arrive in low-salinity surface waters. Targeted profiling of larval assemblages complements widespread monitoring of recruitment from shore and is necessary to determine how changing ocean conditions affect larval distributions, recruitment dynamics, and the connectivity of populations. © 2012, by the Association for the Sciences of Limnology and Oceanography, Inc

    Repeated eye reduction events reveal multiple pathways to degeneration in a family of marine snails

    No full text
    Eye reduction occurs in many troglobitic, fossorial, and deep‐sea animals but there is no clear consensus on its evolutionary mechanism. Given the highly conserved and pleiotropic nature of many genes instrumental to eye development, degeneration might be expected to follow consistent evolutionary trajectories in closely related animals. We tested this in a comparative study of ocular anatomy in solariellid snails from deep and shallow marine habitats using morphological, histological, and tomographic techniques, contextualized phylogenetically. Of 67 species studied, 15 lack retinal pigmentation and at least seven have eyes enveloped by surrounding epithelium. Independent instances of reduction follow numerous different morphological trajectories. We estimate eye loss has evolved at least seven times within Solariellidae, in at least three different ways: characters such as pigmentation loss, obstruction of eye aperture, and “lens” degeneration can occur in any order. In one instance, two morphologically distinct reduction pathways appear within a single genus, Bathymophila. Even amongst closely related animals living at similar depths and presumably with similar selective pressures, the processes leading to eye loss have more evolutionary plasticity than previously realized. Although there is selective pressure driving eye reduction, it is clearly not morphologically or developmentally constrained as has been suggested by previous studies
    • 

    corecore