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Coastal margins are important areas of materials flux that link terrestrial and marine ecosystems. Consequently, climate-mediated changes 
to coastal terrestrial ecosystems and hydrologic regimes have high potential to influence nearshore ocean chemistry and food web dynamics. 
Research from tightly coupled, high-flux coastal ecosystems can advance understanding of terrestrial–marine links and climate sensitivities 
more generally. In the present article, we use the northeast Pacific coastal temperate rainforest as a model system to evaluate such links. We 
focus on key above- and belowground production and hydrological transport processes that control the land-to-ocean flow of materials and 
their influence on nearshore marine ecosystems. We evaluate how these connections may be altered by global climate change and we identify 
knowledge gaps in our understanding of the source, transport, and fate of terrestrial materials along this coastal margin. Finally, we propose five 
priority research themes in this region that are relevant for understanding coastal ecosystem links more broadly.
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Coastal margins are highly active zones at the   
 interface between land and ocean, encompassing 

tightly linked, dynamic, and productive ecosystems. These 
interconnected systems have received increasing scientific 
and public attention in recent years because of the recogni-
tion that approximately 40% of the world’s human popula-
tion lives within 100 kilometers (km) of the ocean, and 
climate change threatens the resilience of these complex 
social–ecological systems (IPCC 2014). Material fluxes from 
coastal watersheds subsidize estuarine processes and ocean 
productivity; however, climate-mediated changes to ter-
restrial ecosystems and hydrologic regimes are influencing 
elemental and organic matter transport to marine ecosys-
tems and therefore altering nearshore ocean chemistry and 
food web dynamics (Ward et  al. 2020). Regions with high 
hydrologic throughput that are experiencing accelerated 
rates of climatic change are especially vulnerable to such 
shifts and may have a disproportionate downstream influ-
ence (O’Neel et  al. 2015). Tight coupling across ecosystem 

boundaries in coastal watersheds, combined with the climate 
sensitivity of key processes that influence materials flux (e.g., 
plant production, soil organic matter decomposition), may 
lead to unforeseen threshold responses and regime shifts in 
ecosystem functioning (Groffman et al. 2006).

Coastal temperate rainforests (CTRs) epitomize how 
connections between terrestrial, freshwater, and near-
shore marine ecosystems are being altered by temperature 
increases, precipitation changes, and the loss of glacial mass. 
Mountainous coastlines dominated by fjords and island 
archipelagos often characterize CTR landscapes and this 
topographic network funnels large volumes of freshwater 
to nearshore systems because of the combination of steep 
terrain, high ocean-derived precipitation, and cumulative 
runoff from many small watersheds. With this hydro-
logic outflow comes abundant terrestrial material, includ-
ing organic carbon (OC) and micronutrients, originating 
from carbon (C)-rich wetlands and dense forests and glacial 
weathering of underlying bedrock (Hood and Scott 2008, 
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D’Amore et al. 2015a, Edwards et al. 2020). Given the large 
OC stocks in CTR ecosystems and considerable hydrologi-
cally mediated material export to the ocean, climatic shifts 
are likely to have clear impacts on coastal materials process-
ing with implications for global C and nutrient cycling (fig-
ure 1; Cloern et al. 2016).

Despite substantial research on some ecosystem com-
ponents of CTRs, there has been relatively little holistic 
research on the ecosystem processes occurring across their 
coastal margins and any consequent impacts of climate 
change. Such high-flux ecosystems are potentially valu-
able for advancing broader understanding and predictive 
modeling of terrestrial–marine links and thresholds (Ward 
et  al. 2020). For example, changes in watershed hydrology 
associated with climate-driven snow-to-rain transitions will 
shift the timing and magnitude of biogeochemical fluxes to 
coastal ecosystems and subsequent incorporation of terrige-
nous materials into marine food webs. In the present article, 
we use the northeast Pacific coastal temperate rainforest 
(NPCTR) as a model system to elucidate the key above- 
and belowground production and hydrological transport 
processes that control the land-to-ocean flow of materials 
and their influence on nearshore marine ecosystems, and 
evaluate how they may be altered by global climate change 
as expressed at regional scales. We also identify knowledge 
gaps in our understanding of the source, transport, and fate 

of terrestrial materials along this coastal margin and propose 
priority research themes in this region that are relevant for 
the understanding of coastal ecosystem links more broadly.

Ecoregion description
The NPCTR (figure 2) stretches more than 2000 km from 
south-central Alaska, in the United States, through British 
Columbia (BC), Canada, and down the coast to northern 
California, in the United States. The NPCTR is divided 
into four forested subregions, from north to south: sub-
polar (10,137 square kilometers [km2]), perhumid (95,515 
km2), seasonal (116,714 km2), and warm or coast redwood 
(8391 km2; Kellogg 1995). This article centers exclusively on 
the largest subregions—the northern, perhumid, and south-
ern, seasonal—which extend from just south of the Alsek River 
watershed in southeast Alaska to the Eel River watershed in 
California. These subregions represent the vast majority (92%) 
of the biome area, have broadly similar plant communities, 
and fall between the climate extremes of the snowy and cold 
subpolar forest in the north and the coastal fog-dominated 
redwood zone in the south. Hereafter, NPCTR will refer to 
these two subregions. Within the NPCTR, large and long-
lived conifers, abundant peatland ecosystems, and deep soils 
store some of the highest amounts of C globally (combined 
above- and belowground, more than 1000 megagrams [Mg] 
per hectare [ha]; Smithwick et al. 2002, McNicol et al. 2019, 

Figure 1. Key ecosystem characteristics of the northeast Pacific coastal temperate rainforest and priority research themes 
within the context of climate change.
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Kauffman et al. 2020). The landscape has been largely shaped 
by several episodes of glaciation, combined with uplift and 
erosional processes, leading to a complex pattern of islands, 
incised coastal mountain ranges, fjordlands, wide glacial val-
leys, and lowlands. The presence of glacial ice and permanent 
snow is a defining characteristic of many NPCTR watersheds, 
however the region is experiencing some of the highest rates of 
glacial mass loss worldwide (Larsen et al. 2015).

Climatologically, the NPCTR is characterized by cool 
summers and relatively high precipitation (figure 3). 
Mean annual air temperature at sea level increases roughly 
6 degrees Celsius (°C) from north to south, averaging 5.6°C 
at the northern end in Juneau, Alaska and 11.6°C at the 
southern end of the region in Eureka, California. Regional 

trends in precipitation are dominated by strong orographic 
effects that produce some of the highest annual rain- and 
snowfall in North America (in places more than 5000 milli-
meters annually). The vast amounts of precipitation that fall 
as rain and snow in the NPCTR, combined with steep topog-
raphy and generally low evapotranspiration rates, translate 
to extremely high specific discharge rates and an overall 
massive volume of runoff into the North Pacific Ocean.

In the present article,we focus on the many small coastal 
watersheds of the NPCTR and exclude the 10 larger, well-
studied rivers (e.g., Columbia, Fraser, Skeena) that originate 
east of the coastal mountain range and display hydro-
logic regimes typical of interior ecosystems and climates 
(figure 2). These coastal margin watersheds have marine, 

Figure 2. Map of the northeast Pacific coastal temperate rainforest (NPCTR) drainage basin (dark gray, inset) and 
perhumid and seasonal rainforest subregions. The ten largest watersheds are delineated with hash marks; these all 
have substantial portions of their basins outside of the NPCTR. The remainder of the drainage area is characterized by 
extensive rainforest cover and a large number of smaller watersheds (Gonzalez Arriola et al. 2018). Current ecosystem 
heterogeneity from north (perhumid rainforest) to south (seasonal rainforest) is described. Bathymetry is from Esri (2020). 
Source: Adapted from Kellogg (1995).
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west coast climate regimes and are much smaller (mean 
watershed size of 212 km2 among delineated watersheds 
more than 20 km2 versus 112,500 km2; Gonzalez Arriola 
et al. 2018) and vastly more numerous (n > 1000) than the 
major rivers. Several studies modeling freshwater flux across 
the NPCTR suggest that these smaller watersheds contribute 
a disproportionately high volume of the freshwater flux to 
the ocean (e.g., Morrison et  al. 2012, Hill et  al. 2015). For 
example, in the area between (and including) the Columbia 
and Stikine rivers, the five biggest watersheds produce 57% of 
the regional annual discharge (568 cubic kilometers [km3]); 
the remaining smaller coastal watersheds produce 43% of 
the discharge (429 km3) while draining only 15% of the 
area (Morrison et al. 2012). By comparison, the magnitude 
of runoff from these thousands of small NPCTR streams 
approximates the annual runoff of the Mississippi River, 
although collectively these spatially distributed streams 
drain only about a tenth of its land area.

The flow of water across the NPCTR coastal margin 
facilitates large fluxes of nutrients and riverine OC, mainly 
as dissolved organic carbon (DOC). As a result, this region 
exhibits some of the highest documented yields of DOC for 
small coastal streams globally (D’Amore et al. 2015a, Oliver 
et  al. 2017). Nitrogen (N) yields from NPCTR watersheds 
with high alder (Alnus spp.) coverage can be many times 
higher than from other forested ecosystems (Compton et al. 
2003). Phosphorus (P) and iron (Fe) derived from mechani-
cal weathering of bedrock by glaciers are also exported from 
NPCTR streams to the coastal ocean (Hood and Scott 2008, 
Schroth et al. 2011). Collectively, these terrestrially derived 
materials influence marine biogeochemistry and food webs 

(Wetz et  al. 2006, Fellman et  al. 2010, 
Arimitsu et al. 2018).

Freshwater flows combine with winds 
and tides to drive fjord and estuary cir-
culation, front formation, and seasonal 
stratification. These local hydrodynamic 
processes influence nutrient dynamics, 
sediment loading, and light availability in 
the nearshore, which, in turn, affect pri-
mary productivity, plankton composition 
and biomass, and the diversity and produc-
tivity of higher trophic levels (Etherington 
et al. 2007, Arimitsu et al. 2016). The large 
volume of freshwater outflow from the 
NPCTR supports a contiguous coastal 
boundary current, the Riverine Coastal 
Domain (Carmack et al. 2015), that moves 
northward from the Columbia River and 
around the Gulf of Alaska (GOA; figure 2). 
Even farther offshore, freshwater and its 
associated terrestrially derived material 
are transported hundreds of kilometers 
westward over the continental shelf and 
into the GOA by large anticyclonic eddies 
(Ladd et al. 2009).

Notwithstanding widely shared ecosystem attributes 
across 20 degrees of latitude, the NPCTR spans broad 
gradients of glacierization, coastal hydrodynamics, and dis-
turbance regimes (figure 2). The northern majority of the 
region—Alaska to the northeastern Olympic Peninsula—
was glaciated during the Last Glacial Maximum and there-
fore exhibits a characteristic fjord landscape with thousands 
of small, steep coastal watersheds. The unglaciated portion 
from the western Olympic Peninsula south to California has 
a much different coastal physiography, with broader coastal 
floodplains, shallow bays, and fewer coastal watersheds. 
Generally, NPCTR coastal waters are divided into down-
welling and upwelling domains, north and south of Queen 
Charlotte Sound, respectively. The downwelling domain 
receives marine nutrients by onshore transport of surface 
nutrients and late winter upward mixing of continental shelf 
waters, experiencing greater retention of freshwater and ter-
restrial material outflows in the coastal zone, whereas the 
upwelling domain receives large annual inputs of marine-
derived nutrients from the deep ocean (Ware and McFarlane 
1989). On land, very long fire return intervals characterize 
the northern NPCTR (Gavin et  al. 2003), and there is less 
anthropogenic landscape modification compared with the 
southern NPCTR. In contrast, the southern NPCTR has 
a more pronounced fire regime (Gavin et  al. 2013) and a 
history of extensive logging, agricultural conversion, and 
urbanization (Omernik and Gallant 1986). There is a similar 
gradient in anthropogenic impacts on freshwater and marine 
ecosystems from north to south, with dam infrastructure, 
declines in anadromous fisheries, and higher nutrient loads 
increasing as one moves from north to south.

Figure 3. Regional climate normals (1981–2010) The outlines of the ten largest 
watersheds are shown with hash marks (Gonzalez Arriola et al. 2018). Source: 
The data are from Hamann et al. 2015, Wang et al. 2016). Abbreviations: MAP, 
mean annual precipitation; MAT, mean annual temperature. 
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Figure 4. Gridded primary hydrologic regime (snow dominated, hybrid, rain dominated) types from 1981 to 2010 
and projected shifts in distributions and timing of peak runoff under RCP 8.5. The figure was produced using 
the Distributed Climate Water Balance Model (Moore et al. 2012), using a single parameter set from Edwards 
and colleagues (2020), and run at a 400 meter pixel interval driven by ClimateNA normals and projections 
through 2080 (Wang et al. 2016). A total of 40 hydrographs representing snow dominated (15), hybrid (15), 
and rain dominated (10) from 1981 to 2010 were selected as a training data set, and then each 400 meter pixel 
across the domain was classified using a k nearest neighbor algorithm. To validate hydrograph typing, 200 KNN 
classifications from the 1981–2010 data set were randomly selected and manually classified, resulting in 98% 
agreement.
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Current and future climate and surface hydrologic 
regimes
NPCTR watersheds can generally be classified by flow 
regime (figure 4; Fleming et al. 2007, Sergeant et al. 2020). 
Lower elevation watersheds, where rain is the primary form 
of precipitation, exhibit low flows in late summer (July–
September) with peaks in mean monthly discharge in late 
fall and early winter (October–December). Higher eleva-
tion drainages have hybrid snow- and rain-driven regimes, 
where flows peak in fall and early winter from rain and 
rain-on-snow events and again in the spring with melting of 
seasonal snowpacks. Discharge in both systems tends to be 
flashy, and flood events are associated with frontal storms 
originating from the Pacific Ocean. In the highest eleva-
tion watersheds, especially in the perhumid NPCTR, snow 
and ice melt become a dominant source of runoff, with the 
highest monthly flows occurring in late spring to late sum-
mer and low flows in the winter (Moore et al. 2009, Sergeant 
et al. 2020).

Against a background of naturally high interannual vari-
ability associated with coordinated patterns of atmosphere–
ocean circulation such as El Niño–Southern Oscillation 
(ENSO) and the Pacific Decadal Oscillation (PDO), which 
show differential streamflow effects depending on local 
hydrologic regime (Fleming et  al. 2007), long-term global 
climate change is altering overall NPCTR hydroclimatol-
ogy. Continued temperature increases contribute to glacier 
recession (Larsen et al. 2015) and eventual declines in glacial 
runoff (Moore et al. 2009), as well as cool-season precipita-
tion increasingly falling as rain rather than snow (McAfee 
2013), producing decreased low- to mid-elevation seasonal 
snowcover.

A major ongoing hydrologic impact of these changes is 
the shift in geographic distribution of flow regimes, with the 
extent of rain-driven and hybrid systems moving north and 
east (figure 4). With a larger proportion of rain relative to 
snow in winter, more precipitation runs directly into stream 
channels (particularly in rain-on-snow events), increasing 
winter streamflow and making channel-changing flows more 
frequent. Snowpack is reduced, and the snowmelt freshet 
occurs earlier and is smaller, with a decrease in late sum-
mer–early autumn water levels (Shanley et al. 2015). In many 
northern NPCTR headwater basins, glacial recession is fur-
ther altering the hydrologic cycle by generating a transitory 
meltwater pulse that may last for decades, whereas, in south-
ern areas, the loss of glacial ice available for seasonal melt has 
resulted in an ongoing decline in summer flows, exacerbating 
effects of diminishing snowmelt and changing downstream 
biogeochemistry (Hood and Berner 2009, Moore et al. 2009). 
Collectively these changes in seasonal flows, temperature, and 
chemistry can have compounding and complex effects on 
estuarine processes and phenology (Ward et al. 2020).

Although broad impacts of climate change in the 
NPCTR are well understood, particularly as they relate to 
temperature-induced shifts, uncertainty remains around 
details (figure 5). Predicted shifts in precipitation depend 

on the specific models, data sets, and measures consid-
ered; however, a common theme is the likely presence of 
north–south gradients across the NPCTR. For example, 
atmospheric river frequency may be increasing across 
the NPCTR, but the effect might be more pronounced 
in the north (Payne et  al. 2020). There are also potential 
increases anticipated in summer drought throughout the 
NPCTR (Mote and Salathe 2010, Walsh et al. 2014, Lader 
et  al. 2020). It remains unclear how ENSO and PDO will 
be affected by climate change; even without alterations to 
these climate processes themselves, however, their interac-
tions with the watershed hydrologic cycle will shift funda-
mentally under climate change, particularly in northern 
NPCTR streams, where specific interactions between these 
climate modes and glacial melt runoff will fade as glaciers 
recede (Fleming et al. 2016).

Terrestrial production and delivery of materials to 
surface waters
Although coastal rainforest predominates in the NPCTR, 
the heterogeneity of topography, climate, and disturbance 
histories across the terrestrial landscape leads to high varia-
tion in both the composition and structure of ecosystems, as 
well as their response to perturbation.

Aboveground stocks and processes.  Vegetation in the perhumid 
NPCTR is a mix of upland coniferous forests and open 
or forested wetlands, with slope and associated depth to 
groundwater determining vegetation type and aboveground 
biomass (Asada et al. 2003, Bisbing et al. 2016). Upland for-
ests predominate in the seasonal NPCTR, where soils tend to 
be better drained. Across the NPCTR, aboveground C stor-
age is high compared with tropical and boreal forests (Keith 
et al. 2009), estimated from 325 Mg per ha (95% confidence 
interval [CI]= 50) at the northern end (Alaska; Leighty et al. 
2006), and increasing southward to 455 Mg per ha (95% 
CI = 156; BC; Matsuzaki et al. 2013) and 685 Mg per ha (95% 
CI = 47; Oregon and Washington; Smithwick et  al. 2002). 
Forests of the NPCTR have been a relatively stable, large C 
sink over the past several decades (Peng et al. 2014, Buma 
and Barrett 2015), but sensitivity to climatic and hydrologic 
forcing means that thresholds in C production and storage 
are likely to be crossed as the climate continues to change.

Forest C stability is driven largely by a conspicuous lack of 
frequent, large-scale or high-severity disturbances, particu-
larly in the perhumid NPCTR. The infrequency of distur-
bances (0.03%–0.84% area disturbed per year, 2000–2012; 
Buma et  al. 2017) combined with the longevity of many 
dominant tree species (often more than 500 years; Waring 
and Franklin 1979) means that, at broad temporal and spa-
tial scales, materials export from forests to streams generally 
depends on climatically mediated changes in the hydrologic 
cycle itself. Increasing disturbance frequency may, however, 
have a negative effect on soil C stocks and stability because 
of disruption of the soil profile, alteration of infiltration and 
drainage, and changes in species composition (Defrenne 
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et  al. 2016). Summer drought is driving increases in fire 
prevalence and extent in portions of the NPCTR, where 
this disturbance was historically infrequent (Reilly et  al. 
2017) and increases in fire severity in areas in which fire 
was already important historically (Schoennagel et al. 2017). 
Fires strongly affect the C cycle and could change the region 
from a C sink to source and lead to increasing water flux 
through forested ecosystems (e.g., Buma and Livneh 2017). 
Shifts in forest C stocks and greater C delivery to surface 
waters are also likely with the increase in frequency and 
severity of mass-movement disturbances, such as windthrow 
and landslides, predicted with climate-mediated changes in 
weather patterns (Dale et al. 2000).

With or without dramatic shifts in disturbance regimes, C 
sequestration and storage will be affected as the distributions 
(Hamann and Wang 2006) and growth (Buma and Barrett 
2015) of tree and shrub species change under altered precipi-
tation and temperature regimes. Changes in landscape-scale 
forest biomass consistent with a warming climate are already 
apparent across the Alaskan NPCTR, with increases on 
northerly aspects, at lower elevations, and at higher latitudes 
(Buma and Barrett 2015). Future warming that reduces 
energy limitations will likely result in continued increases 
in forest growth in the perhumid NPCTR, whereas intensi-
fied summer drought may decrease tree establishment and 
growth rates in the seasonal NPCTR (Kang et al. 2014).

Although C storage is a key focal point in the carbon-
dense NPCTR, coupled aboveground and belowground 
changes to other elemental cycles (i.e., N and P) are also pre-
dicted as climate and disturbance regimes change. More fre-
quent freeze–thaw events associated with warming winters 
can alter couplings between plant nutrient uptake, microbial 
communities, and nutrient cycling that ultimately lead to 
increased soil N and the potential for P leaching (Wipf et al. 
2015). Freeze–thaw events associated with transitions from 
snow to rain are additionally driving sudden shifts in for-
est community composition (e.g., yellow cedar Callitropsis 
nootkatensis replacement by western hemlock Tsuga het-
erophylla; Oakes et  al. 2014, Bisbing et  al. 2019). These 
shifts can in turn influence soil N cycling rates (Bisbing and 
D’Amore 2018) although total nutrient stocks may change 
more slowly. Disturbance events may also greatly alter N 
availability and loss via vegetation change. For example, the 
widespread symbiotic nitrogen-fixing tree red alder (Alnus 
rubra) is favored by both fire (Long and Whitlock 2002) 
and projected climate change (Cortini et al. 2012), with the 
potential to greatly increase watershed N export (Compton 
et al. 2003). Overall, the relationship between these antici-
pated changes in aboveground productivity and community 
composition and materials export is not well constrained 
and it remains unknown how it may vary across the region 
(figure 5).

Belowground stocks and processes.  Across the NPCTR, wet-
lands store exceptional amounts of belowground C—up to 
709 Mg per ha in peatlands (McNicol et  al. 2019) and 822 

Mg per ha in tidal forested wetlands (Kauffman et al. 2020), 
and when combined with aboveground C, these forest and 
wetland ecosystems store some of the highest amounts of C 
per unit area globally (Keith et  al. 2009). The cool climate 
and persistent soil saturation of the perhumid, and to a lesser 
extent seasonal, NPCTR create unfavorable conditions for 
decomposition, supporting the accumulation of substantial 
soil C stocks. High soil C stocks in turn facilitate storage 
of organic forms of N and P in soil (Perakis et  al. 2017, 
Kranabetter et  al. 2020), with particularly rapid C, N, and 
P increases under N-fixing red alder (Dynarski et al. 2020).

The flow of water both vertically and laterally through 
NPCTR soils is a fundamental control on the production, 
cycling, and export of materials across the terrestrial–
aquatic interface. Both deep, well drained and shallower, 
poorly drained NPCTR soils display high C and nutrient 
storage potential, but export potential depends greatly on 
soil hydrology. For instance, persistent soil saturation in the 
abundant wetlands in the perhumid NPCTR mobilizes DOC 
and transports it laterally to streams while also increasing 
anoxic soil conditions that restrict oxidized nutrient forms 
(e.g., nitrate [NO3

–]) in soil water (Emili and Price 2013, 
D’Amore et al. 2015b). High biotic demand for nutrients fur-
ther suppresses inorganic pools (Bisbing and D’Amore 2018) 
and results in organic nutrients as the dominant export 
to surface waters (Fellman et  al. 2008, Hood et  al. 2019). 
On the other hand, vertical water flow through deep, well-
drained soils of the seasonal NCPTR increases DOC sorp-
tion onto mineral soil horizons and reduces DOC available 
for transport to surface waters (Cory et al. 2004). High soil 
N content can simultaneously cause natural N-saturation 
and high N export as NO3

– in watersheds with high alder 
coverage, despite low atmospheric N deposition (Perakis and 
Sinkhorn 2011). These differing soil biogeochemical and 
hydrologic properties across the NPCTR create exceptional 
ranges of potential C and nutrient delivery to surface waters, 
and their collective implications across the landscape are not 
well understood (figure 5).

Hydrologic regimes additionally influence soil biogeo-
chemical transformations via seasonal water table drawdown 
and soil moisture depletion driven by high evapotranspira-
tion and lower precipitation in spring and early summer. This 
seasonal drought depresses water table levels and expands 
the aerobic zone into the hydrologically inactive subsurface 
horizons, facilitating organic matter mineralization (Emili 
and Price 2013, D’Amore et al. 2015b) and the accumulation 
of OC and nutrients (N, P, and silicon) in the shallow sub-
surface soil layers (Ward et al. 2012). Subsequent rainfall that 
elevates water table levels into the highly conductive surface 
horizons facilitates lateral transport of OC and nutrients to 
surface waters. The largest lateral OC and nutrient fluxes 
occur episodically when rainfall is preceded by warm, dry 
periods that allow for water table drawdown and enhanced 
soil C mineralization (e.g., Fellman et  al. 2009, Ward et  al. 
2012). Therefore, extension of the summer seasonal drought 
may increase fall-season OC flux to surface waters.
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The overarching influence of temperature and watershed 
hydrology as drivers of materials generation, processing, 
and delivery affirms that climate-driven changes will have 
significant impacts on export of terrestrial-derived materials 
to coastal ecosystems. Increased terrestrial ecosystem pro-
ductivity in response to warmer temperatures, for instance, 
is likely to increase net C inputs to soils in the perhumid 
NPCTR (McGuire et  al. 2018), while, at the same time, 
warmer temperatures may increase soil OC decomposition 
(Fellman et  al. 2017). This will likely lead to enhanced C 
generation and export, although the magnitude and dynam-
ics of changes depend on how C transport is affected by 
hydrologic regime shifts and the ability of soil microbes to 
remove DOC before delivery to surface waters (figure 5; 
Jepsen et  al. 2019). Furthermore, study is needed to parse 
out the relative importance of these drivers on C flux and 
how this scales across the region.

Materials export to the coastal ocean
Material fluxes from NPCTR streams to the ocean are sub-
stantial, although, to date, there has been more emphasis on 
C flux (mainly DOC) than other elements. In the Alaskan 
NPCTR, the estimated areal hydrologic C flux rate is nearly 
five times the mean areal flux for the conterminous United 
States (Butman et al. 2016), and the total DOC flux is 17%–
20% of that from the conterminous United States (Edwards 
et al. 2020). Forested streams across the NPCTR have variable 
but relatively high concentrations of DOC (approximately 1 
to 25 milligrams of C per liter), which, in combination with 
high rates of specific discharge, result in yields of DOC more 
than  20 grams of C per square meter per year from small, 
coastal watersheds in Alaska and northern BC (D’Amore 
et al. 2015a, Oliver et al. 2017). These are among the highest 
measurements recorded worldwide. In the southern NPCTR, 
DOC yields are generally lower (approximately 2 grams of C 
per square meter per year) as a result of the predominance of 
water flow through DOC-sorbing mineral soils (Cory et  al. 
2004) and lesser prevalence of wetlands on the landscape. 
Although concentrations of DOC are low under glacial influ-
ence (Hood and Scott 2008, Fellman et  al. 2014), absolute 
fluxes of DOC from glacial rivers can be substantial because 
of the high specific discharge associated with glacial water-
sheds (Hood et al. 2009). This range of behaviors illustrates 
how understanding of climate drivers and climate change 
affects materials flux across the NPCTR can broadly inform 
patterns and processes in other regions globally.

Fluxes of riverine dissolved inorganic C (DIC; as carbon 
dioxide [CO2] and bicarbonate) and riverine particulate 
organic C (POC) are poorly quantified for the NPCTR. 
However, a study in the Eel River, California, found that 
DIC varied markedly with streamflow (Finlay 2003), sug-
gesting a vulnerability to change with future hydrologic 
regimes. The few studies of riverine POC export indicate 
that concentrations are higher in the wet winter months in 
southwestern BC (Kiffney et  al. 2000), whereas export is 
dominated by short-lived, high discharge events in coastal 

Oregon and California (Goñi et al. 2013, Thom et al. 2018). 
In fact, recent research in a small headwater stream in 
Oregon suggests that POC yields can be twice that of DOC 
(Argerich et al. 2016), highlighting the potential importance 
of POC to total aquatic C flux; however, this may not hold 
true for perhumid watersheds rich in DOC. Riverine DIC in 
the region is further substantially enhanced by the action of 
glaciers (Anderson et al. 2000), and glacial runoff (especially 
in Alaska and BC) also likely plays an important role in POC 
export, as has been documented in other glacierized regions 
(Bhatia et al. 2013).

Beyond C, the export of N, P, Fe and other micronutrients 
is not well quantified for the NPCTR. This is especially true 
for the thousands of small, ungauged rivers in BC and Alaska, 
although limited studies suggest that organic N and P yields 
dominate total N and P export in the north (Hood et  al. 
2019). Inorganic nutrient forms dominate N export along 
the coastal margin from Washington to northern California, 
which is likely because of local areas of agricultural fertilizer 
runoff, and more broadly, the abundance of N-fixing alder 
(Compton et  al. 2020). Maximum export of trace metals 
(e.g., Fe and manganese) has been shown to occur during 
periods of high flow when dissolved organic matter (DOM) 
loads are high, as a result of organic-matter–metal interac-
tions (Sugai and Burell 1984). In addition, glacial streams 
are characterized by high levels of glacier-derived silt and 
elevated fluxes of rock-derived nutrients such as P and Fe 
relative to forested watersheds (Hood and Berner 2009). 
Spawning salmon also seasonally release large quantities 
of inorganic N and P and thereby contribute to seasonal 
watershed nutrient yields (Hood et al. 2019). Further effort 
is needed to constrain nutrient export across space, season, 
and storm event cycles in the NPCTR (figure 5).

Influences of materials export on coastal marine 
ecosystems
Physical processes and nutrient subsidies driven by freshwa-
ter fluxes maintain tight links between terrestrial and marine 
environments in the NPCTR. Riverine discharge plays an 
important role in the supply of nutrients to the continental 
shelf off of southern BC, Washington, and Oregon through 
its influence on coastal circulation (Davis et  al. 2014). 
Northward, terrestrially derived Fe and associated nutrients 
are transported off the shelf into the GOA by large, low-
salinity eddies driven by coastal currents (Ladd et al. 2009). 
In the high NO3

–
 and Fe environment of the GOA, these Fe 

subsidies in particular can significantly enhance primary 
productivity (Boyd et al. 2007), which highlights the impor-
tance of land-to-ocean links in coastal margin productivity.

Closer to shore, the thousands of relatively small and steep 
NPCTR watersheds support rapid delivery of freshwater, C, 
and nutrients to nearshore environments with minimal time 
for microbial processing while in the freshwater environ-
ment (Oliver et al. 2017). Although terrigenous N delivered 
by rivers is likely insignificant in the context of the greater 
continental shelf and North Pacific marine ecosystem 
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(Brown and Ozretich 2009, Sutton et  al. 2013), it may be 
locally important to estuarine and nearshore habitats. Along 
the Oregon coast, high freshwater silicate and nitrate (NO3

–) 
loads delivered from small coastal rivers during storms can 
promote winter phytoplankton production and deliver suffi-
cient Fe to support the entire summer upwelling production 
(Wetz et  al. 2006). In addition, high organic matter (OM) 
loads may stimulate seasonal microbial productivity, which 
enhances OM mineralization and release of inorganic nutri-
ents that likely play a key role in making terrestrial nutrients 
accessible to marine food webs (Fellman et  al. 2010, St. 
Pierre et  al. 2020). Stable and radiogenic C isotopic analy-
ses have demonstrated incorporation of terrestrial OM by 
higher trophic level pelagic organisms such as fish and sea-
birds in coastal Alaska and the seasonal NPCTR (Maier and 
Simenstad 2009, Arimitsu et al. 2018). Overall, the pathways 
of terrestrial OM assimilation into NPCTR marine food 
webs are not well characterized, although it is expected that 
accessibility is mediated by the quality and bioavailability of 
the terrestrial OM (figure 5; Bianchi 2011).

The potential shift toward warmer, wetter winters and 
drier summers under a changing climate is expected to 
alter the timing and intensity of marine–terrestrial links, 
particularly in the perhumid NPCTR. A weakening of the 
spring freshet in glaciated fjords may in turn weaken sum-
mer estuarine circulation and nearshore nutrient resupply to 
these ecosystems (Davis et al. 2014). High winter freshwater 
discharge has been linked with decreased primary produc-
tion because of intensification of summer stratification 
(Thomson et al. 2012). This was proposed to be the mecha-
nism behind the exceptionally low marine survival of Fraser 
River sockeye in 2007, yielding a 2009 return that was the 
lowest on record at that time (McKinnell et al. 2014).

The large inputs of freshwater and terrestrial C (organic 
and inorganic) also influence the coastal ocean C and car-
bonate systems. The marine waters of the NPCTR have a 
natural tendency to conditions corrosive to carbonates (Feely 
et  al. 2008), and this can be locally enhanced by freshwater 
outflows such as glacier meltwater that is undersaturated in 
CO2 compared with the atmospheric reservoir (Reisdorph 
and Mathis 2014). Changes in the delivery of this lower alka-
linity water are expected to affect the timing and intensity of 
ocean acidification as well as hydrodynamics on and off the 
shelf (Siedlecki et al. 2017). Small changes in ocean pH may 
have large impacts on coastal food webs, especially food web 
components (e.g., pteropods, bivalves, and crustaceans) that 
depend on calcium carbonate (Haigh et  al. 2015). Future 
research should investigate how natural variability in the 
carbonate chemistry of NPCTR coastal waters will be affected 
by changes in C biogeochemistry and freshwater runoff, and 
their interaction with increases in atmospheric CO2.

Advancing knowledge in coastal temperate 
rainforest ecosystems
Despite the recent research into aspects of the NPCTR eco-
system, significant knowledge gaps—such as those described 

in the preceding sections—remain in our understanding 
of the interconnected processes across CTR margins, in 
the NPCTR and globally (figure 5). For example, although 
there are regional estimates of OC stocks and aquatic fluxes 
(mainly DOC), fundamental uncertainties persist regard-
ing overall vulnerability of the NPCTR C stock to climate 
change; the export (quantity and timing) of N, P, Fe, and 
other micronutrients; the pathways of terrestrial materials 
incorporation into marine food webs; and the spatial vari-
ability in these processes across scales from watersheds to 
the region. Because of the complex interplay between sys-
tems that are traditionally studied by disparate disciplines, 
the cumulative effects governing the magnitude, scale, and 
timing of freshwater and materials flux to NPCTR coastal 
ecosystems remain poorly understood. Nonetheless, the 
NPCTR represents a useful study system for testing hypoth-
eses regarding the importance of materials production and 
export from coastal watersheds to the nearshore marine eco-
system and how these links might change with future climate 
conditions. In particular, the differences between the perhu-
mid and seasonal NPCTR subregions—in coastal morphol-
ogy and complexity, number and size of coastal watersheds, 
upwelling versus downwelling, disturbance regimes, and 
distribution of wetlands—superimposed on regional gradi-
ents in precipitation and temperature provide opportunities 
for comparative work into the sensitivity of ecosystem pro-
cesses and threshold responses across this coastal margin. 
Such studies across broad geomorphic and environmental 
gradients could also inform understanding in other coastal 
margins that share features of the NPCTR (figure 1).

There are, of course, limits to this approach across major 
ecosystem domains. The production, mobilization, and 
export of materials through the NPCTR are affected by 
highly variable seasonal and interannual climate forcing, 
making it difficult to unravel climate-induced changes in 
terrestrial-to-marine links from the natural variability that 
defines the region. However, in our view regional spatial 
comparisons will nevertheless provide insight into the 
ecosystem functions of major domains, their geography, 
and transitional zones while improving the science basis 
of predictive Earth systems modeling (Ward et  al. 2020). 
Therefore, using the natural variability inherent across the 
NPCTR for comparative studies, we recommend the priori-
tization of the following research themes (figure 1), which 
are also relevant to other CTRs around the world:

Will the terrestrial ecosystems of the NPCTR become a source or 
sink of C under a changing climate?  Changes to tree growth, 
species distributions, and disturbance patterns across the 
region complicate projections of total ecosystem C stocks, 
and trajectories may be different in the north versus the 
south. For belowground stocks, laboratory incubations 
show that NPCTR wetland soils contain a sizeable pool 
of readily biodegradable OC that can be mineralized to 
CO2 or lost as DOC via leaching and lateral export with 
future climate warming (Fellman et al. 2017). These results, 
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combined with paleo records of long-term C accumulation 
in peatlands (Turunen and Turunen 2003), suggest that, 
under future climate regimes, perhumid NPCTR soils may 
transform from an ecosystem that suppresses organic matter 

decomposition and sequesters C to one 
that promotes more vegetation produc-
tion and enhanced decomposition. These 
changes may be less pronounced in the 
seasonal NPCTR given already warm 
summer temperatures and little precipi-
tation, where instead climate-mediated 
changes in wildfire regimes could greatly 
influence ecosystem C balances. Better 
estimates of plant growth and especially 
mortality (Harmon and Bell 2020) across 
the region are needed to project changes 
in aboveground biomass accumulation, 
and field measurements of soil C turn-
over or manipulative studies of tempera-
ture and water table are clearly necessary 
to assess the vulnerability of the region’s 
massive soil C stock to climate change.

How will predicted climate changes influence 
the land-to-ocean movement of freshwater 
and materials?  Climate instability in the 
NPCTR, which may manifest through 
changes to mean hydroclimatic regimes 
and more extreme weather events such as 
winter storms and summer drought, will 
affect terrestrial production, removal, 
and export of materials to the marine 
ecosystem. Warmer temperatures, lon-
ger periods of summer drought, and 
lowering of the soil water table drive 
organic matter decomposition. Lower 
winter snowpacks and consequent freez-
ing soil conditions may lead to seasonal 
increases in soil DOC concentrations 
(Haei et  al. 2013). When these periods 
are followed by severe storms, massive 
amounts of OC and nutrients may be 
transported laterally into stream net-
works and flushed to the ocean (e.g., 
Fellman et  al. 2009). Severe storms can 
also lead to landslides and other mass 
wasting events, moving large volumes of 
rock and OM downstream (Swanson and 
Lienkaemper 1978, Guthrie et al. 2010). 
Whether these types of events lead to an 
overall increase in materials transport or 
simply a change in the frequency, ampli-
tude, timing, and seasonality of fluxes is 
unknown.

What regime shifts and nonlinearities will 
dominate NPCTR ecosystem dynamics under continued climate 
change?  Transitions from snow-dominated to rain-dom-
inated precipitation regimes along both latitudinal and 
elevational gradients are leading to rapid changes in both 

Figure 5. Knowledge gaps in NPCTR ecosystem processes as was discussed in the 
text. Characteristic landscape types in the NPCTR from top to bottom: hanging 
glacier, Alaska (photograph: Molly Tankersley); upland forest, Alaska (photograph: 
Molly Tankersley); sloping fen wetland, Alaska (photograph: Molly Tankersley); 
glacially carved valley, British Columbia (photograph: Ian Giesbrecht); 
mountainous coastal landscape, Alaska (photograph: Molly Tankersley).
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forest community composition and the timing of runoff, 
two seemingly discrete but tightly connected components 
of this system. In addition, rising temperatures and increas-
ing summer droughts are leading to increasing severity and 
extent of wildland fires. We have only a poor understanding 
of the extent to which these shifts will lead to abrupt changes 
in biogeochemical cycling and export across the coastal 
margin, i.e., thresholds and new stable states (Groffman 
et al. 2006), and if so, how that may differentially manifest 
in the perhumid versus the seasonal NPCTR. For example, 
will changes in forest C storage be gradual—with gains 
and losses correlated with temperature, precipitation, and 
topography (Buma and Barrett 2015)—or episodic as fire 
increases in severity and drives rapid shifts in composition 
and functioning (Gavin et  al. 2013)? Comparative studies 
across the region are needed to better understand the rate 
and magnitude of ecosystem change given ongoing and 
future climate trajectories.

How will key links among NPCTR ecosystem components strengthen 
or weaken with continued climate change?  Within the NPCTR, 
there may be distinct places and times at which the magni-
tudes of biogeochemical processes are sufficient to influence 
entire ecosystems (i.e., ecosystem control points; Bernhardt 
et  al. 2017), but these have not been identified or charac-
terized for this region. For example, we hypothesize that 
the strength and magnitude of coastal hydrodynamic phe-
nomena such as the Riverine Coastal Domain may become 
more variable in response to changing weather patterns 
and hydrologic regimes, affecting the marine transport 
and processing of terrestrially derived materials. Similarly, 
altered disturbance regimes may influence water, C, and N 
fluxes from terrestrial to freshwater ecosystems, strengthen-
ing the links within watersheds. Collection of baseline data, 
long-term monitoring, comparative studies, and modeling 
are necessary to investigate how the strength of terrestrial–
marine connections is likely to be altered.

What is the relative importance of terrestrially derived materials 
in regulating marine ecosystem processes in the NPCTR and how 
will marine ecosystems respond to altered land-to-ocean materials 
fluxes?  Climate-mediated alteration of freshwater discharge 
will affect coastal currents, sea surface temperature, and 
the delivery (timing and concentrations) of materials to 
the ocean, potentially affecting phenology and productiv-
ity of lower trophic levels in the nearshore and beyond the 
continental shelf. For example, in the perhumid NPCTR, 
increased glacial melt and stronger storms may deliver 
more DOC to the coastal ocean, favoring bacterioplankton 
over phytoplankton and potentially altering marine food 
webs (e.g., Andersson et al. 2018). More information about 
elemental production and delivery to freshwaters and the 
processing of materials by marine microbes in the water 
column, at the sediment–water interface, and in sediment is 
needed. Studies that pair measurements of OM flux and bio-
availability with quantification of estuarine metabolism will 

allow us to constrain the contribution of terrestrial-derived 
OM to estuarine demand.

Conclusions
These research themes are useful as a framework for inves-
tigating terrestrial–marine links in other CTRs and coastal 
systems around the world. To date, there has been very 
little comparative work among CTRs even though these 
regions exhibit similar climates, ecosystem functioning, 
and materials fluxes. How do NPCTR ecosystem processes 
compare with other CTRs, such as in Chile and New 
Zealand? Studies into the role of storms in nutrient export, 
the burial of C versus assimilation by marine microbes, and 
the importance of seasonality in the timing of materials 
fluxes on coastal processes have the potential to provide 
insights into the collective impact of such high-flux ecosys-
tems on global elemental cycling. Similarly, studies of the 
production, removal, delivery, and fate of materials within 
CTRs may be valuable in advancing our understanding of 
ecosystem connections across a variety of coastal margins 
(e.g., Marcarelli et al. 2018), and in creating better predic-
tive models of such links.

Like CTRs worldwide, the NPCTR expresses regionally 
consistent patterns of forest cover, extremely high pre-
cipitation and runoff, and proximity to the coast. But within 
these broadly consistent patterns, it is spatially divided at 
a large scale by physiography and glacial history and at a 
finer scale by highly dissected topography and associated 
microclimates, and variable physical processes and eco-
logical responses stratified along latitudinal and elevational 
gradients. At more than 2000 km in length, the NPCTR 
spans four U.S. states and a Canadian province, and this 
transnational character combined with its relative remote-
ness to large urban centers may have contributed to its lack 
of prior holistic study as a unified rainforest ecosystem. 
With climate-driven changes to watershed hydrology and 
above- and belowground ecological processes combining to 
alter the magnitude, timing, and type of materials flux into 
nearshore marine systems, there is a pressing need to bridge 
prior divides across disciplines and research traditions. 
Doing so will provide insight into the importance and sensi-
tivity of processes linking terrestrial and marine ecosystems 
around the world.
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