2,376 research outputs found

    Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works

    Get PDF
    An anaerobic pond (AP) for treatment of temperate domestic wastewater has been studied as a small works sludge management strategy to challenge existing practice which comprises solids separation followed by open sludge storage, for up to 90 days. During the study, effluent temperature ranged between 0.1 °C and 21.1 °C. Soluble COD production was noted in the AP at effluent temperatures typically greater than 10 °C and was coincident with an increase in effluent volatile fatty acids (VFA) concentration, which is indicative of anaerobic degradation. Analysis from ports sited along the AP's length, demonstrated VFA to be primarily formed nearest the inlet where most solids deposition initially incurred, and confirmed the anaerobic reduction of sludge within this chamber. Importantly, the sludge accumulation rate was 0.06 m3 capita−1 y−1 which is in the range of APs operated at higher temperatures and suggests a de-sludge interval of 2.3–3.8 years, up to 10 times longer than current practice for small works. Coincident with the solids deposition profile, biogas production was predominantly noted in the initial AP section, though biogas production increased further along the AP's length following start-up. A statistically significant increase in mean biogas production of greater than an order of magnitude was measured between winters (t(n=19) = 5.52, P < 0.001) demonstrating continued acclimation. The maximum methane yield recorded was 2630 mgCH4 PE−1 d−1, approximately fifty times greater than estimated from sludge storage (57 mgCH4 PE−1 d−1). Anaerobic ponds at small works can therefore enable sludge reduction and longer sludge holding times than present thus offsetting tanker demand whilst reducing fugitive methane emissions currently associated with sludge storage, and based on the enhanced yield noted, could provide a viable opportunity for local energy generation

    IN3 COSTS ASSOCIATED WITH HCV AND RELATED COMPLICATIONS IN THE UNITED STATES FROM A MANAGED CARE PAYER'S PERSPECTIVE

    Get PDF

    Identification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment

    Get PDF
    In this study, conventional and novel gas sparging regimes have been evaluated for a municipal wastewater granular anaerobic MBR to identify how best to achieve high sustainable fluxes whilst simultaneously conserving energy demand. Using continuous gas sparging in combination with continuous filtration, flux was strongly dependent upon shear rate, which imposed a considerable energy demand. Intermittent gas sparging was subsequently evaluated to reduce energy demand whilst delivering an analogous shear rate. For a flux of 5 L m-2 h-1, a fouling rate below 1 mbar h-1 was sustained with low gas sparging frequency and gas sparging rates. However, to sustain low fouling rates for fluxes above 10 L m-2 h-1, a gas sparging frequency of 50 % (i.e. 10 s on/10 s off) and an increase in gas sparging rate is needed, indicating the importance of shear rate and gas sparging frequency. An alternative gas sparging regime was subsequently tested in which filtration was conducted without gas sparging, followed by membrane relaxation for a short period coupled with gas sparging, to create a pseudo dead-end filtration cycle. Fouling characterisation evidenced considerable cake fouling rates of 200-250 mbar h-1 within each filtration cycle. However, long term fouling transient analysis demonstrated low residual fouling resistance, suggesting the cake formed during filtration was almost completely reversible, despite operating at a flux of 15 L m-2 h-1, which was equivalent or higher than the critical flux of the suspension. It is therefore asserted that by operating filtration in the absence of shear, fouling is less dependent upon the preferential migration of the sub-micron particle fraction and is instead governed by the compressibility of the heterogeneous cake formed, which enables higher operational fluxes to be achieved. Comparison of energy demand for the three gas sparging regimes to the energy recovered from municipal wastewater AnMBR demonstrated that only by using dead-end filtration can energy neutral wastewater treatment be realised which is the ultimate ambition for the technology

    The logic of fossil fuel bans

    Get PDF
    Until recently, national bans on fossil fuel-related activities were a taboo subject, but they are now becoming increasingly common. The logic of appropriateness that underpins such bans is key to understanding their normative appeal, and to explaining and predicting their proliferation

    The significance of hazardous chemicals in wastewater treatment works effluents

    Get PDF
    This is the post-print version of the final paper published in Science of The Total Environment. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.The advent of increasingly stringent and wider ranging European Union legislation relating to water and the environment has required regulators to assess compliance risk and to respond by formulating appropriate pollution control measures. To support this process the UK Water Industry has completed a national Chemicals Investigation Programme (CIP), to monitor over 160 wastewater treatment works (WwTWs) for 70 determinands. Final effluent concentrations of zinc, polynuclear aromatic hydrocarbons (fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene), “penta” congeners (BDEs) 47 and 99, tributyltin, triclosan, erythromycin, oxytetracycline, ibuprofen, propranolol, fluoxetine, diclofenac, 17β-estradiol and 17α-ethinyl estradiol exceeded existing or proposed Environmental Quality Standards (EQSs) in over 50% of WwTWs. Dilution by receiving water might ensure compliance with EQSs for these chemicals, apart from the BDEs. However, in some cases there will be insufficient dilution to ensure compliance and additional management options may be required

    Aqueous Processes and Microbial Habitability of Gale Crater Sediments from the Blunts Point to the Glenn Torridon Clay Unit

    Get PDF
    A driving factor for sending the Mars Science Laboratory, Curiosity rover to Gale Crater was the orbital detection of clay minerals in the Glen Torridon (GT) clay unit. Clay mineral detections in GT suggested a past aqueous environment that was habitable, and could contain organic evidence of past microbiology. The mission of the Sample Analysis at Mars (SAM) instrument onboard Curiosity was to detect organic evidence of past microbiology and to detect volatile bearing mineralogy that can inform on whether past geochemical conditions would have supported microbiological activity. The objective of this work was to 1) evaluate the depositional/alteration conditions of Blunts Point (BP) to GT sediments 2) search for evidence of organics, and 3) evaluate microbial habitability in the BP, Vera Rubin Ridge (VRR), and GT sedimentary rock
    corecore