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Abstract  
 
The advent of increasingly stringent and wider ranging European Union legislation relating to water 

and the environment has required regulators to assess compliance risk and to respond by formulating 

appropriate pollution control measures. To support this process the UK Water Industry has completed 

a national Chemicals Investigation Programme (CIP), to monitor over 160 wastewater treatment 

works (WwTWs) for 70 determinands. Final effluent concentrations of zinc, polynuclear aromatic 

hydrocarbons (fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene), “penta” congeners (BDEs) 47 and 99, tributyltin, 

triclosan, erythromycin, oxytetracycline, ibuprofen, propranolol, fluoxetine, diclofenac, 17β-estradiol 

and 17α-ethinyl estradiol exceeded existing or proposed Environmental Quality Standards (EQSs) in 

over 50% of WwTWs.  Dilution by receiving water might ensure compliance with EQSs for these 

chemicals, apart from the BDEs. However, in some cases there will be insufficient dilution to ensure 

compliance and additional management options may be required. 
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1. Introduction  

Recent European Union (EU) legislation in the field of water and the environment has extended the 

scope of pollution control measures required to protect surface waters (EC, 2000, 2008, 2012). This 

has been driven by the improved understanding of the environmental impact of hazardous chemicals 

contained in wastewater effluents upon receiving waters and the flora and fauna they support. These 

effects, particularly those associated with endocrine disruption (Sumpter, 2009), have received much 

attention in the last decade. Endocrine disruption in the aquatic environment was first reported by 

Dodds et al. (1938) and the impact of organic micropollutants and heavy metals have been known for  

number of years (Bedding et al. 1982; Lester et al. 1980) and have been the subject of legislation for 

an extensive period in the UK (Bedding et al. 1983; Lester, 1983). However, there has been a need 

within the EU to update and harmonize existing legislation (EC, 2000, 2008, 2012) including 

regulations to control of the introduction of more recently recognized hazardous chemicals (Behera et 

al. 2009; Gabriel et al. 2012; González  et al. 2012; Martínez Bueno et al. 2012; Martin Ruel et al. 
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2012; Rodil et al. 2012). European Union Directives including the Water Framework Directive (WFD) 

(EC, 2000) and the Priority Substances Daughter Directive (EC, 2008) have defined Environmental 

Quality Standards (EQSs) for substances that hitherto have not been subject to detailed scrutiny and 

control. Environmental Quality Standards, in the form of annual average and in some cases maximum 

admissible concentrations, have been set at EU level for over 30 substances. A further tranche of 

more than 20 standards for chemicals designated as ‘specific pollutants’ under Annex VIII of the WFD 

is under consultation at the UK national level. The wide range of chemicals involved (Bedding et al. 

1982; Gonzalez et al. 2012; Kolpin et al. 2002) and the analytical difficulty of working at ng/L levels 

(Buisson et al., 1984) in a complex matrix such as wastewater (Robertson and Lester, 1994) make 

this a challenging proposition. In order to address this, the UK water industry has initiated an 

ambitious programme of investigations the Chemicals Investigation Programme (CIP) which is 

coordinated by the UK Water Industry Research (UKWIR) organisation as part of the UK National 

Environment Programme. The CIP operates three phases: 

  

 C1 - Investigations to assess risk from chemicals  

Final effluents from 162 WwTWs from England, Scotland and Wales were collected and 

analysed to determine the concentrations of chemicals discharged to receiving waters and 

their compliance with identified quality criteria.  

 

 C2 - Investigations to assess WwTWs performance   

Assessments of 28 WwTWs were completed to evaluate the treatment performance across 

primary, secondary and some tertiary treatment processes.  

 

 C3 – Source investigations  

Overall nine urban catchments across the UK have been studied to assess catchment 

sources of the CIP specified chemicals discharged to sewer.  

 

This study reports the findings of the first phase (C1) and for further information on the additional CIP 

phases 2 and 3 see supplementary material. The objectives of phase 1 are: 

 To identify chemicals of concern and their concentrations in final effluents; 

 To assess the range of concentrations between treatment works in different areas and 

between works of different types; 

 To evaluate the compliance risk posed by chemicals with respect to water quality standards; 

 To determine an order of priority amongst chemicals for the possible implementation of 

control measures. 

 

The work reported here provides a broadly representative picture of hazardous chemicals from 

WwTWs throughout the UK as illustrated in Figure 1. This will allow for the formulation of appropriate 

control measures, to meet limit values that are either new or which might be more stringent than 

before.  



 

Figure 1.  The locations of WwTW selected for phase 1 of the CIP for monitoring chemicals in 

final effluents. 

 

2. Materials and Methods  

2.1 Design of the sampling programme 

Figure 2 shows the respective profiles of WwTWs chosen for the phase 1 final effluent investigations 

and those of all UK treatment works, illustrating, through the lightly shaded columns in the “all works” 

diagram, that the profile of WwTW sizes matched that of the total UK profile well, with 70% of the 

national population being served by works in the size range included in this part of the CIP 



programme. Of those excluded, the greater proportion of the population is served by a small number 

of extremely large WwTWs, with a population equivalent (PE) of >500,000 which were omitted from 

the programme because such sites tend to have known and specific industrial inputs that would have 

to be dealt with separately on a site by site basis. Inclusion of such works did not therefore accord 

with the aim of characterising the broader national picture. At the opposite end of the scale, the CIP 

does not provide a fully proportional representation of very small works (PE <5,000). However, these 

works, although numerous, do not treat the wastewater from a large proportion of the population, are 

generally subject to larger dilution with receiving water (it might not be cost beneficial or feasible for 

some measures to be implemented at smaller works in any case). This therefore demonstrates that 

the selection of WwTWs was representative of UK WwTWs works in general, with the treatment 

processes operated at these WwTWs divided approximately equally between trickling filters and 

activated sludge based processes (supplementary Table 1). 

 

2.2 Sample collection  

Final effluents from 162 WwTWs were sampled either 14 or 28 times over a period of one year at 

each site. Works with lower dilution in receiving waters were sampled more frequently to increase 

confidence in site specific information. Grab samples were taken at different times during the day, 

with at least 15% of samples taken out of normal working hours (evenings or at weekends). Grab 

sampling was the chosen approach due to concerns over sample stability for stored composites. In 

addition, since compliance is usually assessed by means of grab sampling, knowledge about the 

variance of such samples was seen as of value in itself. Samples for the determination of metals were 

collected with polyethylene samplers, filtered (0.45 µm) on site then acidified and stored in 

polyethylene (samples for mercury determinations were stored in glass or PTFE and preserved with 

acid dichromate (Feldman, 1974)). Samples for the determination of trace organic substances were 

collected with stainless steel samplers, stored in glass and transported at 4ºC to the laboratories. 

Preservation with 3 ml of 30% hydrochloric acid and 0.25g of copper nitrate per litre was used for 

steroid estrogen samples. Storage for all organic samples was a maximum 5 days at 4ºC. 

 

2.3 Analysis and quality control 

A test of sample stability in settled crude sewage and final effluents was undertaken (Gardner et al , 

2012) to validate the sample storage period of 5 days under refrigeration, before the end of which it 

was specified that analysis must have been initiated. Additional spiked quality control samples were 

included to assess the impact of storage.  

  

The programme covered more than 70 target chemicals, including 10 metals (total and dissolved), 22 

EU Priority or Priority Hazardous Substances, 16 chemicals of emerging concern (herbicides, 

consumer chemicals and pharmaceuticals – see supplementary material) along with 16 supporting 

determinands including those that are measures of wastewater quality, treatment performance and 

the prediction of metal speciation. The required limits of detection (LODs) for the target chemicals 

were based on the EQS values in 2009 and are listed in Table 1. However, as of January 2012 further



 

 
 

Figure 2 Comparison of population profiles of WwTWs included in the survey of chemicals in 
final effluents with all UK works. The grey shading illustrates that the study had a 
lower proportion of small works than are present nationally. 

 
 

 

Table 1 Chemicals addressed in the Chemicals Investigation Programme 

 

 

proposals on EQSs, amending Directives 2000/60/EC as regards priority substances in the field of 

water policy were made by the European Commission (EC, 2012), and therefore the data reported 

here are considered in light of these proposals. Table 1 also identifies all chemicals and their 

abbreviation codes used in summary figures in the supplementary information. Comparable groups of 

determinands were studied by Hope et al (2012) and Martin Ruel et al. (2012). 
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Field 

Code Substance 

Limit of 
Detection 
required 

µg/l 

   NID nickel (dissolved) 0.5 

NIT nickel (total) 0.5 

PBD lead (dissolved) 0.2 

PBT lead (total) 0.2 

CUD copper (dissolved) 0.3 

CUT copper (total) 0.3 

ZND zinc (dissolved) 0.5 

ZNT zinc (total)  0.5 

CDD cadmium (dissolved) 0.1 

CDT cadmium (total)  0.1 

HGD mercury (dissolved) 0.03 

HGT mercury (total)  0.03 

FED iron (dissolved)  5 

FET iron (total) 5 

ALD aluminium (dissolved) 4 

ALT aluminium (total) 4 

ALR aluminium (reactive) 4 

AGD silver (dissolved) 0.5 

AGT silver (total)  0.5 

DEHP diethylhexylphthalate 1 

BDE28 2,4,4'-tribromodiphenyl ether (PBDE28) 0.0005 

BDE47 2,2',4,4'-tetrabromodiphenyl ether (PBDE47) 0.0005 

BDE99 2,2',4,4',5-pentabromodiphenyl ether (PBDE99) 0.0005 

BDE100 2,2',4,4',6-pentabromodiphenyl ether (PBDE100) 0.0005 

BDE153 2,2',4,4',5,5'-hexabromodiphenyl ether (PBDE153) 0.0005 

BDE154 2,2',4,4',5,6'-hexabromodiphenyl ether (PBDE154) 0.0005 

NOP Nonylphenol 4-nonylphenol 0.3 

TBT Tributyltin compounds (Tributyltin-cation) 0.0002 
 

 

Field 
Code Substance 

Limit of 
Detection 

required 
µg/l 

   ANT anthracene 0.1 

FLU fluoranthene 0.1 

NAP naphthalene 2 

BAP benzo(a)pyrene 0.05 

BBF benzo(b)fluoranthene 0.015 

BBK benzo(k)fluoranthene 0.015 

BGHIP benzo(g,h,i)perylene 0.001 

ICDP indeno(1,2,3-cd)pyrene 0.001 

GLYPH glyphosate (N-(phosphonomethyl)glycine) 100 

AMPA aminomethylphosphonic acid 100 

TRICL triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) 0.05 

BENTZN bentazone 100 

BISPA bisphenol-A 0.05 

MCPP mecoprop 10 

EDTA EDTA 50 

IBPF ibuprofen 0.01 

PRPL propranolol 0.01 

ERMY erythromycin 0.01 

OFLX ofloxacin 0.01 

OXTCY oxytetracycline 0.01 

SLCYA salicylic Acid 0.01 

FLXT fluoxetine 0.01 

E1 estrone 0.001 

E2 17β estradiol 0.003 

EE2 17α ethinylestradiol 0.0003 

NOP1ET nonylphenol ethoxylates (1)  0.1 

NOP2ET nonylphenol ethoxylates (2)  0.1 

NOP3ET Nonylphenol ethoxylates (3)  0.1 

DCF diclofenac 0.01 

 



In developing the CIP, consideration was given to establishing the required characteristics for 

analytical performance. The LOD, precision and bias were defined on the basis of achieving adequate 

precision at or near the detection limit of interest. These required LODs were set for determinations 

made in wastewater final effluent to be at least as low as the EQS or other limit value of likely interest 

such as a predicted no effect value (PNEC). A notional limit for analytical error was agreed for organic 

chemicals of ± 50% (25% random error, 25% systematic error) and ± 20% for metals (10% random, 

10% systematic) or the required LOD, whichever was larger. Accredited analytical laboratories were 

required to submit performance test information to demonstrate that they met the analytical 

performance targets.  

 

Participating laboratories, contracted by the water companies responsible for delivery of the 

investigations were required to submit performance test information to substantiate their claim to meet 

the analytical performance targets. A programme of interlaboratory proficiency tests was also set up 

with a commercial provider of such services. The tests relied on a combination of routine proficiency 

tests provided as part of the ongoing proficiency testing programme (Aquacheck, Bury, UK).  With 

respect to data analysis, no statistical outliers were rejected, although approximately 20-30 highly 

discrepant results out of a total of over 200,000 were queried and rejected from the dataset. Results 

reported as less than the limit of detection were substituted with a value ½ the reporting limit as 

specified in by EU reporting regulations (EC, 2009). The coherence of the data set and absence of 

substantial interlaboratory and marked inter-regional effects adds weight to the evidence that bias in 

procedures of sampling and analysis does not significantly affect the primary interpretation of the data 

with respect to prioritisation of substances. 

 

2.4 Data analysis  

 

The annual average values for each chemical at each WwTWs sampled are presented in the results 

tables as percentiles which provide a breakdown of the reported concentrations across all of the 

WwTWs. The concentrations reported represent the percentage of WwTWs where the average 

concentration measured was at or below the figure presented. For example, for dissolved Ni, 50% of 

WwTWs returned an average concentration in their effluent of greater than 4.3 µg/L (Table 2). 

Percentile values underlined represent a concentration greater than either an EQS or PNEC value.  

 

3. Results 

3.1 Works compliance with sanitary and nutrient consents 

The results of the programme are summarised in the supplementary Information in the form of box 

and whisker diagrams showing results for al WwTWs for each of 40 regulated substances. 

Throughout the sampling period all the works were operating within expected design parameters and 

were compliant against sanitary determinand consents for biochemical oxygen demand (BOD) and 

suspended solids (SS), with 95 % of the works compliant with the traditional 20 mg/L and 30 mg/L 

permits for BOD and SS respectively. 



Table 2 Percentile values for average concentration of metals (µg/L) Values underlined in bold indicate the percentile greater than existing and proposed standards. 
 

    
Percentile µg/L 

  

Freshwater EQS 
µg/L 

PNEC 
µg/L 

Substance   5 50 90 95 97.5 AA MAC     

Aluminium Total 20 68 246 369 604 
    

  
Dissolved  4 20 54 76 122 

    

  
Reactive 2 7 17 21 27 

  
50 Environment Agency proposed  

Iron 
 

Total 33 170 694 1040 1249 
    

  
Dissolved  14 59 185 238 310 

  
1000 Defra Direction 2010* 

Cadmium 
PHS

 Total 0.016 0.050 0.200 0.251 0.352 ≤0.08
a
 ≤0.45

a
 

  

  
Dissolved  

 
0.024 0.118 0.185 0.275 

    Chromium 
 

Total 0.5 0.7 3.1 5.4 7.8 
    

  
Dissolved  0.5 0.6 1.9 2.1 2.1 

  
3.4 "BLM adjusted PNEC" 

Copper 
 

Total 3 8.3 21 28 31 
    

  
Dissolved  1.7 5.6 15 19 24 

  
11 "BLM adjusted PNEC" 

Lead
PS

 
 

Total 0.2 0.8 2.1 2.5 2.9 
    

  
Dissolved  0.1 0.4 1.1 1.5 2 1.2

b
 14

b
 6 "BLM adjusted PNEC" 

Mercury 
PHS

 Total 0.013 0.016 0.082 0.109 0.200 
    

  
Dissolved  

 
0.011 0.040 0.058 0.080 

 
0.070 

  Nickel
PS

 
 

Total 1.7 4.9 9.2 14 18 
    

  
Dissolved  1.6 4.3 9.3 12 14 4

b
 34

b
 6 "BLM adjusted PNEC" 

Silver 
 

Total all results <0.5µg/l 
 

  
   

  
Dissolved  all results <0.5µg/ 

 
  

   Zinc 
 

Total 13.6 30.9 57 69.1 83.4 
    

  
Dissolved  9.9 24 48 59 69 

  
17 "BLM adjusted PNEC" 

            Missing data indicate that an undue proportion of less than results makes it impossible to estimate a percentile. Values in bold underscore suggest an exceedance of an EQS or PNEC 
(based on WFD EU and UK values) where multiple EQS apply (e.g. hardness related EQS for some metals) the most stringent value has been used 

 
AA annual average, MAC maximum admissible concentration 
PHS Priority hazardous substance 
PS Priority substance 
a Hardness based, these are lowest for <40mg CaCO3/L   
b Based on a bioavailable fraction 
* http://archive.defra.gov.uk/environment/quality/water/wfd/documents/2010directions.pdf 
“BLM adjusted PNEC” -  based on biotic ligand models available to Environment Agency of England and Wales for pH 7.8, total hardness 125 mg CaCO3/L, 5mg/L DOC  
 
 



3.2 Residual final effluent concentrations and their relevance to EQSs 

Summary results for metals are given in Table 2, along with the relevant EQSs. Samples were 

analysed for both total and dissolved metals; the dissolved fraction is of direct concern for compliance 

with EQS values specified for receiving waters (for aluminium, the reactive form (Gardner et al, 2008) 

is relevant to current discussion of standards in the UK). The quantity of metal associated with 

suspended solids is of concern as insoluble metal bound to solids can accumulate in sediments. In 

addition, there is also the possibility that metals might re-partition into the dissolved phase. This 

emphasises the need to maintain good removal of SS in WwTWs to reduce metal loads being 

discharged. It is apparent that concentrations of Al, Fe, Cr, Hg and Ag in the effluents were in all 

cases below the proposed or existing EQS or PNEC values. The metals for which concentrations 

were observed to be above the standards were Cd, Cu, Ni, Pb and Zn.    

 

In the case of the four metals, Cu, Ni, Pb and Zn, the UK will be employing bioavailability-based EQS 

values (Comber et al., 2008) incorporating DOC correction for Pb or the Biotic Ligand Model (BLM) for 

Cu, Ni and Zn (DeSchamphelaere and Janssen, 2004), which will be used to determine compliance 

with standards on a site-specific basis. In Table 2, alongside the relevant standards, a “BLM adjusted 

PNEC” has also been derived based on biotic ligand models available to the Environment Agency of 

England and Wales (EA) for waters with a pH 7.8, total hardness 125 mg CaCO3/L and 5mg/L 

dissolved organic carbon (DOC). These illustrative EQS values have been selected based on a 

relatively worst case scenario of water with low concentrations of DOC. The final effluent 

characteristics of relevance to the BLM are shown in Table 3. 

 

Table 3 Percentile values for average concentration of metals (mg/L)  
 

 

 

Sanitary determinands and nutrients 

  

Percentile mg/L 

     Substance 5 50 95 97.5 

Total Suspended solids 3.8 9.8 26 31 

Ammonia (NH4+) 0.06 1.02 18.41 32.03 

Total oxididised nitrogen 9.8 82 152 160 

Biochemical oxygen demand 0.9 4.2 19 25 

Chemical oxygen demand 20.5 42.2 87.2 100.2 

Total phosphorus 

 
2.9 9.8 11.7 

Soluble reactive phosphate 0.81 5.5 19 19 

 
Parameters required for application of biotic ligand models 

 

 

Percentile mg/L 

     Substance 5 50 95 97.5 

Sodium 53 79 188 235 

Potassium 9.2 18 27 34 

Magnesium 4.5 8.8 25 30 

Calcium 37 79 138 141 

Total organic carbon 6.1 12 28 32 

Dissolved organic carbon 3.7 9.4 24 29 

Sulphate 35 87 168 185 

Chloride 64 100 272 342 

pH 6.9 7.5 8.0 8.1 

 



Making these assumptions for the derivation of the BLM adjusted PNEC it can be seen that for 

dissolved Pb, average concentrations in effluents from all of the WwTWs were below the BLM 

adjusted PNEC, indicating that using the BLM will result in compliance. However, dilution will be 

required for Cu and Ni to meet the BLM adjusted PNEC at 10% of sites. For dissolved Zn 

concentrations a greater degree of dilution will be required at a higher proportion (50%) of sites, and 

the extent of this is currently the subject of further investigation because bioavailability will vary 

according to conditions downstream after mixing, rather than simply on the basis of its form in 

effluent. As already highlighted the metals for which concentrations occurred above the EQS were 

Cd, Cu, Ni, Pb and Zn. When the BLM adjusted PNECs are applied control measures or dilution will 

be required for Zn in 50% of the works and for Cd, Cu and Ni in 10% of the works.  

 

3.3 Concentrations of regulated and emerging organic chemicals in final effluents 

The data for the organic chemicals in the final effluents of the WwTW were compared with existing 

and proposed EQS (Table 4). Where concentrations in final effluents exceeded existing or proposed 

standards, there will need to be dilution in receiving waters or treatment at the works to ensure that 

rivers comply with the relevant standards. In comparison with data for metals in Table 2, it is apparent 

from Table 4 that many more organic chemicals in the effluents exceed EQS or PNEC standards. 

Indeed, over 50% of WwTWs will be currently be reliant on dilution to limit their impact on the 

receiving waters. However, in the case of the herbicides bentazone, glyphosate (along with its 

metabolite aminomethyl phosphonic acid - AMPA) and mecoprop the final effluent concentrations at 

over 50% of the sites were an order of magnitude below any EQS or PNEC. For glyphosate and 

AMPA, the highest reported values were only observed at a limited number (around 5%) of WwTWs. 

This might be taken to show that in general, there are limited inputs of agricultural herbicides to the 

sewer system, and it may be that the higher values for glyphosate are related to their domestic urban 

use and subsequent runoff which does enter the sewer system following rainfall events.  

 

Concentrations of anthracene and naphthalene, for which proposed EQSs are not as stringent as 

other PAHs, appear not to be of concern with regard to impact on the quality of receiving waters. 

However, in relation to the EQS proposed in January 2012 (EC, 2012), and listed in Table 4, the final 

effluent concentrations at over 50% of WwTWs are of concern for fluoranthene, benzo(a)pyrene, 

benzo(b)fluoranthene, benzo(k)fluoranthene and at 90% of WwTWs for benzo(g,h,i)perylene and 

indeno(1,2,3-cd)pyrene. These 2012 proposed EQSs focus on biota but include implied water quality 

standards. They are significantly more stringent than were listed in the 2008 EC document (L348/84 

EC, 2008), which ranged from 0.002 µg/L for the sum of benzo(g,h,i)perylene and indeno(1,2,3-

cd)pyrene, up to 0.05 µg/L for benzo(a)pyrene. If concentrations of PAHs in receiving waters are 

going to comply with the proposed EQS value, it is likely that dilutions in receiving waters may need to 

be between ten and one hundredfold. 



Table 4 Percentile values for average concentration of organic substances (µg/L) Values underlined in bold indicate the percentile greater than existing and 
proposed standards. 

 

Percentile µg/L Freshwater EQS µg/L PNEC  µg/L 

Substance   5 50 95 97.5 AA MAC 
 

  

glyphosate 
 

0.2 1.1 49.6 50 
  

100 
 AMPA 

 
0.8 6.9 49 50 

  
80 

 
bentazone 

 
0.005 0.02 0.039 0.052 

  
430 

 
mecoprop 

  
0.03 2.0 

   
6 

 
anthracene

PHS
 

  
0.002 

  
0.1 0.1 

  
fluoranthene

IND
 

  
0.01 

  
0.0063 0.12 

  naphthalene
PS

 99% of values reported as <2 µg/l  2 130 
  

benzo(a)pyrene
PHS

 
  

0.0011 0.0066 0.0093 1.7x10
-4

 0.27 
  

benzo(b)fluoranthene
PHS

 
 

0.003 0.009 0.01 1.7x10
-4

 0.017 
  

benzo(k)fluoranthene
PHS

 
 

0.002 0.008 0.009 1.7x10
-4

 0.017 
  

benzo(ghi)perylene
PHS

 
  

0.0011 0.0055 0.0076 1.7x10
-4

 0.0082 
  

indeno123(cd)pyrene
PHS

 
 

0.0014 0.012 0.017 1.7x10
-4

 
   

BDE47
PHS

 
  

0.0007 0.0027 0.0032 4.9X10
-8a

 0.14 
  

BDE99
PHS

 
  

0.0006 0.0029 0.0038 4.9X10
-8a

 0.14 
  bisphenol-A 

 
0.01 0.08 0.56 0.81 

  
0.1 

 
DEHP

PHS
 

 
0.26 0.69 1.9 2.3 1.3 

   
EDTA 

 
34 128 478 616 

  
50 

 
nonylphenol

PHS
 

  
0.22 0.49 0.58 0.3 2 

  
tributyltin

PHS
 

  
0.0003 0.0013 0.0018 0.0002 0.0015 

  
triclosan 

 
0.04 0.15 0.6 0.78 

  
0.1 

 
ibuprofen 

 

0.04 0.33 2.48 3.64 

  
0.01 

 propranolol 
 

0.04 0.14 0.27 0.3 

  
0.01 

 erythromycin 
 

0.23 0.83 1.74 1.94 

  
0.01 

 ofloxacin 
 

0.002 0.01 0.056 0.078 

  
0.01 

 oxytetracycline 
 

0.02 0.17 0.76 0.95 

  
0.01 

 fluoxetine 
 

0.005 0.023 0.069 0.09 

  
0.01 

 diclofenac
PS

 
 

0.09 0.26 0.7 0.85 0.1 
   estrone 

 
0.002 0.0116 0.0792 0.1009 

  
0.003 

 estradiol
PS

 
 

0.0002 0.0013 0.0095 0.0125 4x10
-4

 
   ethinylestradiol

PS
 

 

0.0001 0.0005 0.0014 0.0016 3.5x10
-5

 
   Missing data indicate that an undue proportion of less than results makes it impossible to estimate a percentile. PHS Priority hazardous substance. PS Priority substance.  Ind Present 

on the EC list as an Indicator of other, more dangerous PAH a The sum of congeners 28, 47, 99, 100, 153 and 154. PNECs are in many cases notional values based on 
recommendation of the Environment Agency of England and Wales 



For the BDEs, the majority of results for BDE28, 100, 153 and 154 were predominantly <0.0005 µg/L, 

for congeners BDE47 and BDE99 concentrations were frequently detected above this value. The 

BDEs 100, 153 and 154 are relatively minor components of commercial penta BDE formulations and 

therefore it is not surprisingly that they were detected at lower concentrations and frequencies 

compared with BDE 47 and 99 which represent 40% and 50% of the commercial product composition, 

respectively. Considering the present WFD EQSs for BDEs of 0.0005 µg/L for the sum of six BDE 

congeners (28, 47, 99, 100, 153, 154), concentrations in effluents exceeded this in 50% of cases and 

an approximate 10 times dilution would be required to meet the EQS downstream. However, the 2012 

proposed limits for BDEs by the European Commission (EC. 2012) now imply an annual average 

water EQS of 4.9x10
-8

 µg/L (again the principal focus is on biota), which is four orders of magnitude 

lower. This means that no surface waters in the UK receiving effluent would be likely to comply, as 

required dilutions would need to be in the order of 1:10,000 or greater. 

 

For the purposes of classifying the compounds determined in the CIP programme into clear groups, it 

is worthwhile considering bisphenol-A, DEHP, EDTA, nonylphenol, tributyltin, and triclosan as a set of 

compounds that will come from domestic and possibly urban / industrial activities. Looking at the 

national picture, Table 4 indicates that in around 10% of WwTWs, DEHP may be of concern, with 

concentrations up to twice that of the standard required in receiving waters. For bisphenol A and 

EDTA, the percentages of works discharging at greater than the EQS were 40% and 80%, 

respectively; with a maximum dilution required to meet the EQS of 12 and 17 times. This therefore 

suggests that compliance may be of concern for some WwTWs where only low dilution is available. 

For triclosan, which has been proposed as a new Specific Pollutant with an EQS value of 0.1 µg/L in 

Australia (NICNAS, 2012), 60% of UK WwTWs will require a dilution of up to 10 times to ensure 

compliance.  

 

In relation to estimated compliance risk at 50% or more of the WwTWs the chemicals of concern are 

the high molecular weight PAHs (fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene); the BDEs 47 and 99; TBT 

and triclosan. The herbicides are not of concern and EDTA, although present, is not regulated. 

 

Implications of the occurrence of pharmaceuticals in final effluents 

For pharmaceuticals, UK PNECs are currently estimated at typically 0.01 µg/L but the 2012 proposals 

for new EQSs for EE2, E2 and diclofenac involve considerably lower limits (EE2, 3.5 x 10
-5

 µg/L) (EC, 

2012). In many cases, there will be insufficient dilution available to meet this criterion, leading to a risk 

of EQS/PNEC exceedance in the receiving water. For example, final effluents from all WwTWs would 

require significant dilution (1:100 to 1:1000 times) to achieve proposed EE2 limits. For diclofenac and 

E2 50% of the final effluents from the WwTWs would require dilution at 10 to 100 times to achieve 

proposed limits. Currently, there is little available monitoring information for these pharmaceuticals in 

UK river waters to confirm this assessment. For other substances (erythromycin, oxytetracycline, 

ibuprofen, ofloxacin, fluoxetine and propanolol, and estrone - E1) there are no current plans for EQS 



to be set at an EU level. However, even in relation to existing estimated PNECs the concentrations of 

ibuprofen, propranolol, erythromycin and oxytetracycline in the final effluents are above 0.01 µg/L in 

95% of the WwTWs. 

 

In relation to exceedance of EQS or PNEC at 95% or more of the WwTWs the synthetic hormone and 

pharmaceutical EE2 is of concern as well as the further pharmaceuticals erythromycin, 

oxytetracycline, ibuprofen and propranolol. At 50% of the works fluoxetine and diclofenac are of 

concern as is the natural steroid estrogen hormone E2. Ofloxacin is not of concern. 

 

4. Discussion  

4.1 Correlation analysis 

Correlations (Spearman rank order rho (ρ) correlation, Kendall and Gibbons, 1990) were calculated 

for all combinations of substances. Having such a large dataset meant that ρ values of greater than 

0.23 achieved statistical significance (p=0.05). However, apart from the obvious and established links 

between substances (eg total and dissolved metal, BOD and COD), there were few practically 

important associations that might be used accurately to predict the concentrations of one substance 

from that of another. Such relationships require correlation coefficients approaching 0.9 or greater that 

were not evident in the data. The use of correlation to explore less predictive associations is also of 

value in explaining the nature of contaminant behaviour and sources.  

 

In order to be able readily to appreciate the large data array comprising the correlation matrix, 

software (R development core team, 2008) was employed to produce the visualisation shown in 

Figure 3. This portrays the associations between different substances as a family tree. It appears 

there are four main groupings. On the far left of the diagram are substances that have little 

relationship with the rest of the substances, or indeed with sewage or sewage treatment - calcium, 

pH, sodium, chloride, potassium and sulphate as well as nickel which is largely unaffected by the 

treatment process. Moving right, the next grouping includes the main sanitary parameters and the 

substances that tend to be associated with them. Such association is defined as a tendency to follow 

to some extent the sanitary parameters such that good effluent quality – eg low BOD and TSS – is 

associated with low concentrations of ammonia ibuprofen, E1, E2 and, a little more distantly, with low 

concentrations of TBT triclosan and nonylphenol. These are the trace contaminants for which effluent 

concentrations might be likely to respond to (ie reduce as a result of) improvements in conventional 

measures of treatment. The remaining two groups are more or less a miscellany of the remaining 48 

substances including metals, pharmaceuticals and other trace organic substances. Particularly 

interesting is the rightmost group in which the BDEs and PAHs all appear in the same grouping – 

together with DOC and TOC. This is possibly important; it suggests that these substances might be 

associated with organic carbon, rather than, as might have been expected, with suspended solids. 

 

 

 



 

Figure 3 Dendrogram of associations between C1 substances 
 

 

4.2 Prioritisation of the chemicals of concern in relation to EQS exceedance at over 50% of 

WwTWs 

Chemicals have been prioritised for further consideration on the basis of their concentrations in 

effluent exceeding their EQS or PNEC values in over 50% of the WwTWs. These were:  

1. Metals - Zn 

2. PAHs - fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene) 

3. BDEs - 47 and 99 

4. Organics - TBT  

5. Emerging contaminants - triclosan 

6. Pharmaceuticals - erythromycin, oxytetracycline, ibuprofen, propranolol, fluoxetine and 

diclofenac  

7. Steroids - EE2, E2. 

 

It is stressed that this prioritisation is generic accounts only for the extent to which different 

substances were found to be present at over 50% of the WwTWs effluents in relation to current or 

proposed limit values; local issues will need to be considered separately.   

 



In comparison with other countries where recent national/regional surveys have been completed 

(Hope et al. 2012; Martin Ruel et al. 2012) common hazardous chemicals of concern are: PAHs, 

BDEs, TBT, emerging chemicals such as triclosan and pharmaceuticals such as diclofenac. Martin 

Ruel et al. (2012) prioritised their chemicals based on dividing the final effluent concentration by the 

EQS. Values > 1 at a frequency of > 70% were classed as high frequency chemicals of concern. This 

is similar to this study where values >1 at a frequency of > 50% were applied. In contrast, Hope et al. 

(2012) in the US focussed more on persistent organic pollutants. Chemicals in common with this 

study and that of Martin Ruel et al (2012) were the BDEs 47 and 99. In terms of the PAHs comparable 

concentrations with those in the US were observed in the region of 0.01 µg/L. However, proposed EU 

standards of 1.7x10
-4

 µg/L are more stringent than the US planned initiation level (PIL) applied by 

Hope et al. (2012) of 0.02 - 0.5 µg/L. Therefore the occurrence of PAHs was prioritised in the EU 

studies but not by the US study (Hope et al. 2012). The metals of concern detected in the final 

effluents in France, at frequencies of >70%, were Ni, Pb, Cd, Hg. In this UK study these metals were 

not observed at concentrations above the EQSs at those frequencies.   

 

The chemicals occurring widely in final effluents throughout the UK, frequently above standards, 

provide a focus for control measures that may need to be applied at a large number of locations. An 

initial expectation may be that dilution of effluents in receiving waters will mean that exceedances of 

EQS or PNEC values are limited. Historically, wastewater treatment design has been based on the 

Royal Commission criteria which afforded a minimum dilution of 1:8 between the final effluent and 

river water (Royal Commission 1898-1914). This dilution is now commonly interpreted as 1:10. The 

availability of a 1:10 dilution would clearly increase the probability of downstream compliance. For 

example, for Zn, PAHs, triclosan, fluoxetine and EE2 a 1:10 dilution would reduce the number of 

potential exceedances from 50% of the WwTWs to below 10%.However, this dilution is not always 

realistic  at all sites. The fact that the “upstream” flow might already contain the contaminants of 

interest further undermines the principle of reliance on dilution. For the PAHs, benzo(b)fluoranthene, 

and the pharmaceutical erythromycin a dilution ratio of 1:50 would be required to reduce the number 

of WwTWs effected (Table 5). Recent estimates have estimated that for 3,704 WwTW for which 

estimated river flow data was available within 1 km of the discharge point, that 28% of the works had 

a dilution of less than 1:10 compared with measured WwTW flows or consented dry weather flows 

(Comber et al, 2011).  

 

Dilution requirements for the BDEs are over one hundredfold - many times that available (Table 5). 

Hence other options for control to ensure compliance with WFD requirements must be considered. 

For instance, these might involve source control measures, enhanced treatment options or alternative 

approaches to assessing compliance with standards such as taking into account bioavailability for 

organic chemicals as currently utilised for metals. In a study by Eriksson et al. (2011) concentrations 

would only be reduced for chemicals including Cd, hexachlorobenzene (HCB), nonylphenol and BDE 

by fully implementing restrictions on use as part of an emission control strategy. In addition, the 

scenarios studied illustrated other opportunities for managing hazardous chemicals before they 



become part of the urban water cycle along with managing historic sinks such as sediments (Eriksson 

et al. 2011). Source control measures are already widely applied to priority hazardous substances 

owing to the need for cessation of discharge by 2020. OctaBDE and Penta-BDE (e.g. including 

BDE47 and BDE99) flame retardants have been banned under the 24th amendment to the marketing 

and use Directive 76/769/EEC since 15
th
 August 2004. Their presence in wastewaters is therefore a 

result of residual use as flame retardants in furniture in domestic properties. The breakdown of foams 

leads to accumulation in materials such as clothes, curtains and fabrics, which when washed leads to 

an input to sewer. These inputs to sewer would therefore be expected to decrease with time owing to 

replacement of furniture and degradation. However, like the reductions in concentrations observed for 

TBT and PCB any decline in concentration is likely to be greater than 30 years and will also still be 

unlikely to reduce concentrations to below the EQS values in the short to medium term.   

Concentrations, however, are only one approach, albeit the principal one used by regulatory 

authorities, for measuring inputs of hazardous chemicals. There is an increasing focus on the loads of 

chemicals input to the environment as a means of assessing possible impacts and of understanding 

the relative significance of sources within catchments (Musoleff et al. 2010). The loads discharged 

from the WwTWs included in this study are tabulated in the supplementary data. It is noteworthy that 

loads of hydrophobic, recalcitrant chemicals that are likely to persist in the environment for some time. 

This emphasises the importance of understanding loads for longer term impacts on the quality of 

sediments (Yen et al., 2009) and groundwater (Musoleff et al., 2010). 

 

Table 5 the potential dilution required for chemicals which are present in over 50% of UK 
WwTWs above the EQSs or PNEC concentrations  
 

 

Dilution required 

Substance   1:10 1:50 1:100 >1:100 

fluoranthene 
 

Yes 
   benzo(a)pyrene 

 

Yes 
   benzo(b)fluoranthene 

 
Yes 

  benzo(k)fluoranthene Yes 
   benzo(ghi)perylene 

 

Yes 
   indeno123(cd)pyrene Yes 
   

      BDE47 
    

Yes 

BDE99 
    

Yes 

      tributyltin 
 

Yes 
   

triclosan 
 

Yes 
   

      ibuprofen 
 

Yes 
   propranolol 

 
Yes 

   erythromycin 
  

Yes 
  oxytetracycline 

 
Yes 

   diclofenac 
 

Yes 
   estradiol 

 
       Yes 

   ethinylestradiol 
 

       Yes 
    

Reliance on existing available tertiary treatment to meet EQS and reduce loads to the environment is 



also not necessarily advisable as these data indicate a wide range of effluent quality for advanced or 

tertiary wastewater treatment processes. Hence such processes do not represent a guaranteed 

solution and could involve disproportionate costs if applied at all works. This emphasises the need for 

a robust economic evaluation as part of any mitigation strategy (Eriksson et al. 2011; Jones et al. 

2007), with careful consideration of the time required for marketing initiatives to take effect. 

Nevertheless, concomitant improvements in the removal of hazardous chemicals can be achieved by 

the optimisation of existing process (McAdam et al. 2010, 2011) and upgrading solutions for nutrient 

removal and sanitary determinands. For example, the upgrading of Beckton WwTWs in London in the 

mid 1960’s with the introduction of activated sludge treatment to reduce BOD and SS discharges to 

the River Thames was subsequently found by examination of the sediment record 30 years later to 

have significantly improved the removal of heavy metals, polychlorinated biphenyls and 

organochlorine insecticides (O'Reilly-Wiese et al. 1997a,b; Scrimshaw and Lester, 1997). If source 

control cannot be utilised, for example for certain pharmaceuticals and natural hormones, advanced 

tertiary wastewater treatment options may be an alternative to achieve compliance. A large number of 

tertiary / “end of pipe” treatment options are available. However, some of these processes, notably 

advanced oxidation or membrane filtration can be costly and may result in increased chemical use 

(Jones et al. 2007).  

 

Further data from this ongoing programme will explore topics including process performance  and 

contaminant sources.  

   

5. Conclusions 

 

1. This extensive monitoring programme has demonstrated that trace contaminant 

concentrations in wastewater treatment works’ effluents can exceed existing or proposed 

EQS values. In over 50% of the WwTWs monitored, effluent concentrations of the 

following substances exceed the relevant EQS Zn, PAHs - fluoranthene, benzo(a)pyrene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-

cd)pyrene), BDEs - 47 and 99, TBT, triclosan, erythromycin, oxytetracycline, ibuprofen, 

propranolol, fluoxetine, diclofenac and EE2 and E2. 

2. A nominal tenfold dilution in the receiving water will ensure compliance with EQSs for the 

majority hazardous chemicals, apart from the BDEs and to a lesser extent the steroids 

and (when / if regulated) some pharmaceuticals.   

3. In some cases there will be insufficient dilution to guarantee compliance with downstream 

EQSs. Here additional management options will have to be considered, taking account of 

the need for proportionality between costs and benefits. Measures to be considered will 

include: source control, substance substitution, tertiary treatment, and optimisation of 

existing processes.  
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