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Yellowknife Bay (YKB; sol 124-198) is the second 

site that the Mars Science Laboratory Rover Curiosity 

investigated in detail on its mission in Gale Crater. 

YKB represents lake bed sediments from an overall 

neutral pH, low salinity environment [1], with a miner-

alogical composition which includes Ca-sulfates, Fe 

oxide/hydroxides, Fe-sulfides, amorphous material, and 

trioctahedral phyllosilicates [2]. We investigate wheth-

er sulfide alteration could be associated with ancient 

habitable microenvironments in the Gale mudstones.  

Some textural evidence for such alteration may be pre-

sent in the nodules present in the mudstone [Fig. 1A]. 

Alteration and fluid chemistry: We carried out 

thermochemical modelling [3-5], concluding that in-

congruent dissolution under low temperature (10 °C) 

diagenetic conditions of the precursor host rock was 

the most likely alteration pathway to form the YKB 

mudstone secondary assemblage. The succession of 

events leading to the observed mudstones and the Ca-

sulfate veins was modelled as follows [3-5]: An incom-

ing groundwater caused incongruent dissolution of the 

precursor rock, with a dissolved composition consist-

ing of 70 % amorphous material as found in Portage 

soil (assumed to be volcanic or impact glass), with ad-

ditional olivine and dissolved ‘host rock’. The model 

indicates clay formation and a resultant brine enriched 

in Ca and S sufficient to form Ca-sulfate veins, but also 

carrying additional components, e.g., silica [3]. Be-

cause the Ca-sulfate veins are pure sulfate veins with 

very little SiO2, Ba and other elements, we propose that 

an initial deposition of the majority of dissolved solids 

led to a ‘dirty’ Ca-sulfate deposit, which was buried, 

subsequently dissolved and the Ca-sulfate re-deposited 

in the veins [4,5]. While these models explain the final 

conditions in the sediment, here we also explore inho-

mogeneities, especially the presence of sulfides, the 

question of whether they cause an acidic environment 

or not, and finally the presence of carbonate. 

CheMin and SAM measurements: CheMin x-ray 

diffraction analyses detected 1 % pyrrhotite and traces 

of pyrite in the YKB mudstones [2], alongside with 

akaganeite, which is an alteration product of pyrrhotite 

at its terrestrial type location. The presence of magnet-

ite and hematite (if in equilibrium and not detrital rem-

nants) constrain the redox conditions at mildy oxidiz-

ing. Akaganeite, bassanite, and phyllosilicates contrib-

ute to the H2O release, and minor carbonates (abun-

dances below the CheMin detection limit) and sulfides 

are candidates for some of the CO2 and SO2 releases 

detected during SAM pyrolysis, respectively [6]. 

Methods:  We use the CHIM-XPT software [7] to 

model alteration conditions of sulfide grains within 

host rocks at Gale crater, using titration models (see 

[3]). For the model presented here we added various 

amounts of pyrite and siderite to the host rock compo-

sitions used in [3], which we deduced from the Portage 

soil components [9-11] The model temperature is 10 °C. 

As an analog for those microenvironments, sulfide 

weathering in an L chondrite weathered in Antarctica 

was examined by EMPA and SEM analysis (see [12]). 

Microenvironments: To investigate micro-

environments that might occur around detrital sulfide 

grains, we modeled alteration of a mixture of 55 % 

Portage soil [11] with 22 % olivine [2], 17 % pyrite 

and 6 % siderite with the fluid that evaporates in the 

veins [4,5]. This mixture represents a general basaltic 

rock environment with dominantly olivine dissolution 

in the close vicinity of a sulphide grain. Siderite as the 

Fig. 1. Potential microenvironment around a pyrite grain in car-

bonate-bearing Portage-composition sediment. (A) Curiosity obser-

vation of the Sheepbed structure in the Cumberland Drill Hole, (B) 

pH at various W/R. Note that the system is buffered at various stages 

(stepped nature of the plot). (C) Alteration mineral assemblage for 

a range of W/R. Note that especially at high W/R nontronite, Fe-

hydroxide and chlorite dominate. (D) Fluid composition W/R. 
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carbonate phase is found in martian rock compositions 

(i.e., the Lafayette, Nakhla, Governador Valadares 

meteorites, [13]), and part of the CO2 evolution from 

Portage soil during SAM analysis was consistent with 

minor siderite [14]. In the model it serves to enhance 

CO2 partial pressure during reactions that might precip-

itate the CO2 from the starting fluid thus lowering CO2-

partial pressure in the system. Siderite does not cause 

other changes in the overall rock composition, since Fe 

is one of the most abundant cations. SAM results sug-

gest possible carbonate in the Sheepbed mudstone [6]. 

Our microenvironment model considers the alteration 

of a pyrite grain inside Portage-composition sediments 

via the fluid that is derived from the sulfate-rich depos-

its and enhanced CO2 partial pressure [4,5].  

The reaction of the model composition at 10 °C re-

sults in a pH increase with increasing dissolution (Fig. 

1B), and a nontronite–Fe-hydroxide–chlorite assem-

blage at high W/R, followed by a chlorite–antigorite–

pyrite assemblage at low W/R (Fig. 1C).  The re-

precipitation of pyrite, as predicted by the model (Fig. 

1C) is likely, if the system is reducing. If there is an 

oxidizing agent (potentially perchlorate [15]) oxidized 

S-bearing phases could precipitate instead.  If entirely 

rock-controlled, the redox balance of the fluid changes 

from SO4
2-

-dominated at high W/R to HS
-
-dominated 

at low W/R (Fig. 1D). Because such microenviron-

ments are of spatially restricted nature, and – assuming 

the pyrite dissolution occurs contemporaneously with 

the fluid movement into the fractures that become sul-

fate veins – the dynamic nature of the water flow envi-

ronment would have resulted in fluid recharge events 

that would have kept W/R high, therefore nontronite–

hematite formation appears likely. 

The SO4
2-

/HS
-
-changes in the fluid (Fig. 1D) to-

wards lower W/R, which is a result of this rock-

dominated system.  In the presence of an oxidant, sul-

fate would dominate in solution and precipitate.  The 

carbonate assumed to be present in this microenviron-

ment stays in solution, but buffers the pH (Fig. 1B), 

and thus could contribute to the stabilization of micro-

environmental conditions. Finally, Fe-hydroxide pre-

cipitation occurs (alongside nontronite and chlorite), 

which could explain the nodule formation without 

dominating the ChemCam analyses. However, at no 

point in the model does the entire system become acid-

ic. The rock buffering capacity is stonger than the 

amount of pyrite dissolution in the case presented here. 

Microenvironments in Antarctic Meteorites:  

To examine the spatial extent of sulfide controlled 

acidic micro-environments, areas of sulfide weathering 

in Antarctic L chondrite QUE 94214 were studied [16].  

Sulfide weathering is characterized by enhanced sili-

cate weathering including etch pits when compared to 

areas of typical Antarctic weathering, which is highly 

oxidizing [17,18]. Secondary minerals formed in these 

acidic micro-environments are restricted to thin films 

of Fe-oxyhydroxides in fractures and along grain 

boundaries and very small (<50 µm) in-situ pockets of 

smectites in pyroxenes and olivines. Primary minerals 

displayed significant dissolution through pitting and 

stripping along cleavage planes. Decreases in Si, Mg, 

Mn are accompanied by an increase of Fe in the olivine 

and pyroxene crystals within 1 mm of weathering sul-

fide grains. Areas of abundant pitting are raised by up 

to 3 wt.% FeO. This Fe increase is concentrated in im-

perfections within the crystals in grain boundaries and 

so nanophase Fe-oxyhydroxides are inferred to have 

been deposited at these boundaries. SiO2 measured in 

alteration products in these areas is higher than the 

average SiO2 content in alteration products throughout 

the sample (with SiO2 4-6 wt%) and so the material 

stripped from the ferromagnesian minerals does not 

appear to have been transported far. These observa-

tions demonstrate the small spatial distribution of sul-

fide induced enhanced alteration haloes in low-water 

and low-temperature environments.  

Conclusions: The overall conditions in the rock are 

buffered by the main mineral reactions causing neutral 

to alkaline environments despite the presence of dis-

solving sulphides. The sulfide grains are associated 

with very localised acid alteration, as observed in the 

L-chondrites in microscopic detail, where sulfide alter-

ation causes halos of etching and Fe-oxide deposition. 

Similar localized chemical and pH gradients could 

have formed the nodules observed in YKB (Fig. 1A). 

Together the circumneutral overall rock alteration and 

the chemical gradients towards sulfide grains would 

have offered a variety of redox and pH conditions, in-

cluding chemical gradients favourable for habitability.  
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