16 research outputs found

    Influence of Activated Carbon Surface Oxygen Functionality on Elemental Mercury Adsorption from Aqueous Solution

    Get PDF
    Mercury (Hg), though naturally occurring, is a toxic element. Exposure to various forms of mercury can be harmful for humans and ecosystems. Mercury-contaminated wastewater can be treated using activated carbon to adsorb the mercury, allowing for safe discharge. Wet chemical oxidation of activated carbon was performed to enhanced surface oxygen functionality, with the objective of enhancing aqueous ionic (Hg(II)) and elemental (Hg(0)) mercury adsorption. Characterization of the modified carbons included nitrogen adsorption-desorption, elemental analysis, point of zero charge, and total acidity titration. The concentration and identity of the modifying reagent influenced the characteristics of the carbons, including the surface oxygen functionality. These carbons with enhanced surface oxygen (C(O)) were applied to trace-level Hg solutions (50 μg/L). Adsorption of Hg(II) demonstrated a strong positive correlation with the carbon’s oxygen content, with the greatest Hg(II) removal associated with the highest oxygen content. Interestingly, this correlation was not seen in Hg(0) adsorption. A four variable model best fit the data, identifying surface area, pore volume, point of zero charge, and oxygen content as important variables. The point of zero charge was identified as the primary independent variable. To ensure proper waste handling, it was determined that none of the carbon samples leached mercury at levels that would necessitate treatment and disposal as a hazardous waste

    Optimization of Magnetic Powdered Activated Carbon for Aqueous Hg(II) Removal and Magnetic Recovery

    Get PDF
    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 mg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N2(g) headspace flow to an oxidizingtrap. Mercury adsorption was performed using spiked ultrapure water (100 mg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%

    The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Get PDF
    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy

    Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Get PDF
    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems

    Adsorption of Manganese(II) Ions by EDTA-treated Activated Carbons

    No full text
    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions

    Influence of Activated Carbon Surface Oxygen Functionality on Elemental Mercury Adsorption from Aqueous Solution

    No full text
    Mercury (Hg), though naturally occurring, is a toxic element. Exposure to various forms of mercury can be harmful for humans and ecosystems. Mercury-contaminated wastewater can be treated using activated carbon to adsorb the mercury, allowing for safe discharge. Wet chemical oxidation of activated carbon was performed to enhanced surface oxygen functionality, with the objective of enhancing aqueous ionic (Hg(II)) and elemental (Hg(0)) mercury adsorption. Characterization of the modified carbons included nitrogen adsorption-desorption, elemental analysis, point of zero charge, and total acidity titration. The concentration and identity of the modifying reagent influenced the characteristics of the carbons, including the surface oxygen functionality. These carbons with enhanced surface oxygen (C(O)) were applied to trace-level Hg solutions (50 μg/L). Adsorption of Hg(II) demonstrated a strong positive correlation with the carbon’s oxygen content, with the greatest Hg(II) removal associated with the highest oxygen content. Interestingly, this correlation was not seen in Hg(0) adsorption. A four variable model best fit the data, identifying surface area, pore volume, point of zero charge, and oxygen content as important variables. The point of zero charge was identified as the primary independent variable. To ensure proper waste handling, it was determined that none of the carbon samples leached mercury at levels that would necessitate treatment and disposal as a hazardous waste

    Optimization of Magnetic Powdered Activated Carbon for Aqueous Hg(II) Removal and Magnetic Recovery

    No full text
    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 mg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N2(g) headspace flow to an oxidizingtrap. Mercury adsorption was performed using spiked ultrapure water (100 mg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%
    corecore