248 research outputs found

    Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm–mosquito interactions

    Get PDF
    Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva.Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite.The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies

    Mosquito transcriptome changes and filarial worm resistance in Armigeres subalbatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Armigeres subalbatus </it>is a natural vector of the filarial worm <it>Brugia pahangi</it>, but it rapidly and proficiently kills <it>Brugia malayi </it>microfilariae by melanotic encapsulation. Because <it>B. malayi </it>and <it>B. pahangi </it>are morphologically and biologically similar, the <it>Armigeres-Brugia </it>system serves as a valuable model for studying the resistance mechanisms in mosquito vectors. We have initiated transcriptome profiling studies in <it>Ar. subalbatus </it>to identify molecular components involved in <it>B. malayi </it>refractoriness.</p> <p>Results</p> <p>These initial studies assessed the transcriptional response of <it>Ar. subalbatus </it>to <it>B. malayi </it>at 1, 3, 6, 12, 24, 48, and 72 hrs after an infective blood feed. In this investigation, we initiated the first holistic study conducted on the anti-filarial worm immune response in order to effectively explore the functional roles of immune-response genes following a natural exposure to the parasite. Studies assessing the transcriptional response revealed the involvement of unknown and conserved unknowns, cytoskeletal and structural components, and stress and immune responsive factors. The data show that the anti-filarial worm immune response by <it>Ar. subalbatus </it>to be a highly complex, tissue-specific process involving varied effector responses working in concert with blood cell-mediated melanization.</p> <p>Conclusion</p> <p>This initial study provides a foundation and direction for future studies, which will more fully dissect the nature of the anti-filarial worm immune response in this mosquito-parasite system. The study also argues for continued studies with RNA generated from both hemocytes and whole bodies to fully expound the nature of the anti-filarial worm immune response.</p

    A Deep Sequencing Approach to Comparatively Analyze the Transcriptome of Lifecycle Stages of the Filarial Worm, Brugia malayi

    Get PDF
    Lymphatic filariasis, also known as elephantiasis, is a tropical disease affecting over 120 million people worldwide. More than 40 million people live with painful, disfiguring symptoms that can cause severe debilitation and social stigma. The disease is caused by infection with thread-like filarial nematodes (roundworms) that have a complex parasitic lifecycle involving both human and mosquito hosts. In the study, the authors profiled the transcriptome (the set of genes transcribed into messenger RNA rather than all of those in the genome) of the human filarial worm Brugia malayi in different lifecyle stages using deep sequencing technology. The analysis revealed major transitions in RNA expression from eggs through larval stages to adults. Using statistical approaches, the authors identified groups of genes with distinct life stage dependent transcriptional patterns, with particular emphasis on genes displaying sex-biased or germline-enriched patterns and those displaying significant changes during larval development. This study presents a first comprehensive analysis of the lifecycle transcriptome of B. malayi, providing fundamental molecular information that should help researchers better understand parasite biology and could provide clues for the development of more effective interventions

    The crime drop and the security hypothesis

    Get PDF
    Major crime drops were experienced in the United States and most other industrialised countries for a decade from the early to mid-1990s. Yet there is little agreement over explanation or lessons for policy. Here it is proposed that change in the quantity and quality of security was a key driver of the crime drop. From evidence relating to vehicle theft in two countries it is concluded that electronic immobilisers and central locking were particularly effective. It is suggested that reduced car theft may have induced drops in other crime including violence. From this platform a broader security hypothesis, linked to routine activity and opportunity theory, is outlined

    Construction and characterization of an expressed sequenced tag library for the mosquito vector Armigeres subalbatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito, <it>Armigeres subalbatus</it>, mounts a distinctively robust innate immune response when infected with the nematode <it>Brugia malayi</it>, a causative agent of lymphatic filariasis. In order to mine the transcriptome for new insight into the cascade of events that takes place in response to infection in this mosquito, 6 cDNA libraries were generated from tissues of adult female mosquitoes subjected to immune-response activation treatments that lead to well-characterized responses, and from aging, naïve mosquitoes. Expressed sequence tags (ESTs) from each library were produced, annotated, and subjected to comparative analyses.</p> <p>Results</p> <p>Six libraries were constructed and used to generate 44,940 expressed sequence tags, of which 38,079 passed quality filters to be included in the annotation project and subsequent analyses. All of these sequences were collapsed into clusters resulting in 8,020 unique sequence clusters or singletons. EST clusters were annotated and curated manually within ASAP (A Systematic Annotation Package for Community Analysis of Genomes) web portal according to BLAST results from comparisons to Genbank, and the <it>Anopheles gambiae </it>and <it>Drosophila melanogaster </it>genome projects.</p> <p>Conclusion</p> <p>The resulting dataset is the first of its kind for this mosquito vector and provides a basis for future studies of mosquito vectors regarding the cascade of events that occurs in response to infection, and thereby providing insight into vector competence and innate immunity.</p

    Intraspecies Transmission of BASE Induces Clinical Dullness and Amyotrophic Changes

    Get PDF
    The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrPTSE), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrPTSE type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle

    Mosquito Infection Responses to Developing Filarial Worms

    Get PDF
    Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (∼13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed
    corecore