2,544 research outputs found

    THE NATURE OF SCHOOL OF EDUCATION FACULTY WORK AND MATERIALS FOR PROMOTION AND TENURE AT A MAJOR RESEARCH UNIVERSITY

    Get PDF
    A critical issue facing university administrators and faculty, especially in professional schools, is the mismatch between promotion and tenure criteria and daily demands on faculty time. The purpose of this study was to investigate the relationships among institutional and personal expectations of faculty about the relative importance of teaching, research, and service activities as criteria for awarding faculty promotion and tenure in a School of Education, and its relationship to faculty work. By documenting the nature and extent of school of education faculty activities and products and relating them to institutional expectations and faculty members' own perspectives on the relative importance of the three roles of research, teaching and service, the nature and degree of mismatches were described, and a better foundation for more appropriate promotion and tenure guidelines could be developed.Although individuals varied greatly, overall faculty reported spending 44.4% on teaching-related activities, 35.2% on research, and 20.3% service. They generally agreed that the promotion and tenure process weighted them as 25.6% teaching, 65.6% research, and 8.7% on service. Faculty recommended that these weightings be changed to 37.2% teaching, 49.3% research, and 13.5% service. These suggested changes still kept research as the most highly rated, with teaching second, and service a distant third. Although the changes made teaching more important in promotion and tenure decisions, how the individual school of education faculty spent their time varied greatly.It was recommended that professional schools review these relationships in their settings, and find ways to make promotion and tenure decisions more consistent with the work faculty carry out

    Duality and Pro-Spectra

    Full text link
    Cofiltered diagrams of spectra, also called pro-spectra, have arisen in diverse areas, and to date have been treated in an ad hoc manner. The purpose of this paper is to systematically develop a homotopy theory of pro-spectra and to study its relation to the usual homotopy theory of spectra, as a foundation for future applications. The surprising result we find is that our homotopy theory of pro-spectra is Quillen equivalent to the opposite of the homotopy theory of spectra. This provides a convenient duality theory for all spectra, extending the classical notion of Spanier-Whitehead duality which works well only for finite spectra. Roughly speaking, the new duality functor takes a spectrum to the cofiltered diagram of the Spanier-Whitehead duals of its finite subcomplexes. In the other direction, the duality functor takes a cofiltered diagram of spectra to the filtered colimit of the Spanier-Whitehead duals of the spectra in the diagram. We prove the equivalence of homotopy theories by showing that both are equivalent to the category of ind-spectra (filtered diagrams of spectra). To construct our new homotopy theories, we prove a general existence theorem for colocalization model structures generalizing known results for cofibrantly generated model categories.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-34.abs.htm

    Genome engineering of isogenic human ES cells to model autism disorders.

    Get PDF
    Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity

    Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii

    Get PDF
    Emerging fungal pathogens cause an expanding burden of disease across the animal kingdom, including a rise in morbidity and mortality in humans. Yet, we currently have only a limited repertoire of available therapeutic interventions. A greater understanding of the mechanisms of fungal virulence and of the emergence of hypervirulence within species is therefore needed for new treatments and mitigation efforts. For example, over the past decade, an unusual lineage of Cryptococcus gattii, which was first detected on Vancouver Island, has spread to the Canadian mainland and the Pacific Northwest infecting otherwise healthy individuals. The molecular changes that led to the development of this hypervirulent cryptococcal lineage remain unclear. To explore this, we traced the history of similar microevolutionary events that can lead to changes in host range and pathogenicity. Here, we detail fine-resolution mapping of genetic differences between two highly related Cryptococcus gattii VGIIc isolates that differ in their virulence traits (phagocytosis, vomocytosis, macrophage death, mitochondrial tubularization and intracellular proliferation). We identified a small number of single site variants within coding regions that potentially contribute to variations in virulence. We then extended our methods across multiple lineages of C. gattii to study how selection is acting on key virulence genes within different lineages. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’

    Searching QTL by gene expression: analysis of diabesity

    Get PDF
    BACKGROUND: Recent developments in sequence databases provide the opportunity to relate the expression pattern of genes to their genomic position, thus creating a transcriptome map. Quantitative trait loci (QTL) are phenotypically-defined chromosomal regions that contribute to allelically variant biological traits, and by overlaying QTL on the transcriptome, the search for candidate genes becomes extremely focused. RESULTS: We used our novel data mining tool, ExQuest, to select genes within known diabesity QTL showing enriched expression in primary diabesity affected tissues. We then quantified transcripts in adipose, pancreas, and liver tissue from Tally Ho mice, a multigenic model for Type II diabetes (T2D), and from diabesity-resistant C57BL/6J controls. Analysis of the resulting quantitative PCR data using the Global Pattern Recognition analytical algorithm identified a number of genes whose expression is altered, and thus are novel candidates for diabesity QTL and/or pathways associated with diabesity. CONCLUSION: Transcription-based data mining of genes in QTL-limited intervals followed by efficient quantitative PCR methods is an effective strategy for identifying genes that may contribute to complex pathophysiological processes

    An Atlas of Warm AGN and Starbursts from the IRAS Deep Fields

    Full text link
    We present 180 AGN candidates based on color selection from the IRAS slow-scan deep observations, with color criteria broadened from the initial Point-Source Catalog samples to include similar objects with redshifts up to z=1 and allowing for two-band detections. Spectroscopic identifications have been obtained for 80 (44%); some additional ones are secure based on radio detections or optical morphology, although yet unobserved spectroscopically. These spectroscopic identifications include 13 Sy 1 galaxies, 17 Sy 2 Seyferts, 29 starbursts, 7 LINER systems, and 13 emission-line galaxies so heavily reddened as to remain of ambiguous classification. The optical magnitudes range from R=12.0-20.5; counts suggest that incompleteness is important fainter than R=15.5. Redshifts extend to z=0.51, with a significant part of the sample at z>0.2. The sample includes slightly more AGN than star-forming systems among those where the spectra contain enough diagnostic feature to make the distinction. The active nuclei include several broad-line objects with strong Fe II emission, and composite objects with the absorption-line signatures of fading starbursts. These AGN with warm far-IR colors have little overlap with the "red AGN" identified with 2MASS; only a single Sy 1 was detected by 2MASS with J-K > 2. Some reliable IRAS detections have either very faint optical counterparts or only absorption-line galaxies, potentially being deeply obscured AGN. The IRAS detections include a newly identified symbiotic star, and several possible examples of the "Vega phenomenon", including dwarfs as cool as type K. Appendices detail these candidate stars, and the optical-identification content of a particularly deep set of high-latitude IRAS scans (probing the limits of optical identification from IRAS data alone).Comment: ApJ Suppl, in press. Figures converted to JPEG/GIF for better compression; PDF with full-resolution figures available before publication at http://www.astr.ua.edu/keel/aoagn.pd

    Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug‐resistant epilepsy

    Get PDF
    Objective: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)‐based metabolomics could differentiate AE from drug‐resistant epilepsy (DRE), and stratify AE subtypes. Methods: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin‐associated protein‐like 2 (CASPR2), 29 with leucine‐rich glioma inactivated 1 (LGI1) and 20 with N‐methyl‐d‐aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS‐DA). Results: The OPLS‐DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS‐DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high‐density lipoprotein (HDL, −(CH2)n−, –CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype‐specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, –CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR‐antibody patients. Interpretation: This study presents the first non‐antibody‐based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics

    Exchange bias between van der Waals materials: tilted magnetic states and field-free spin-orbit-torque switching

    Full text link
    Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the two-dimensional limit. Here, we report studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2 (FGT). The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr greater than 10 nm is needed to provide a non-zero exchange bias at 30 K

    Somatosensory dysfunction is masked by variable cognitive deficits across patients on the Alzheimer’s disease spectrum

    Get PDF
    Background: Alzheimer’s disease (AD) is generally thought to spare primary sensory function; however, such interpretations have drawn from a literature that has rarely taken into account the variable cognitive declines seen in patients with AD. As these cognitive domains are now known to modulate cortical somato-sensory processing, it remains possible that abnormalities in somatosensory function in patients with AD have been suppressed by neuropsychological variability in previous research. Methods: In this study, we combine magnetoencephalographic (MEG) brain imaging during a paired-pulse somatosensory gating task with an extensive battery of neuropsychological tests to investigate the inïŹ‚uence of cognitive variability on estimated differences in somatosensory function between biomarker-conïŹrmed patients on the AD spectrum and cognitively-normal older adults. Findings: We show that patients on the AD spectrum exhibit largely non-signiïŹcant differences in somato-sensory function when cognitive variability is not considered (p-value range: .020-.842). However, once attention and processing speed abilities are considered, robust differences in gamma-frequency somatosensory response amplitude (p \u3c .001) and gating (p = .004) emerge, accompanied by significant statistical suppression effects. Interpretation: These ïŹndings suggest that patients with AD exhibit insults to functional somatosensory processing in primary sensory cortices, but these effects are masked by variability in cognitive decline across individuals
    • 

    corecore