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Abstract

Objective: Differentiating forms of autoimmune encephalitis (AE) from other

causes of seizures helps expedite immunotherapies in AE patients and informs

studies regarding their contrasting pathophysiology. We aimed to investigate

whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics

could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE sub-

types. Methods: This study recruited 238 patients: 162 with DRE and 76 AE,

including 27 with contactin-associated protein-like 2 (CASPR2), 29 with

leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-D-aspartate

receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed

using NMR spectroscopy and compared with multivariate statistical techniques,

such as orthogonal partial least squares discriminant analysis (OPLS-DA).

Results: The OPLS-DA model successfully distinguished AE from DRE patients

with a high predictive accuracy of 87.0 � 3.1% (87.9 � 3.4% sensitivity and

86.3 � 3.6% specificity). Further, pairwise OPLS-DA models were able to strat-

ify the three AE subtypes. Plasma metabolomic signatures of AE included

decreased high-density lipoprotein (HDL, �(CH2)n�, –CH3), phosphatidylcho-

line and albumin (lysyl moiety). AE subtype-specific metabolomic signatures

were also observed, with increased lactate in CASPR2, increased lactate, glucose,

and decreased unsaturated fatty acids (UFA, –CH2CH=) in LGI1, and increased

glycoprotein A (GlycA) in NMDAR-antibody patients. Interpretation: This

study presents the first non-antibody-based biomarker for differentiating DRE,

AE and AE subtypes. These metabolomics signatures underscore the potential

relevance of lipid metabolism and glucose regulation in these neurological dis-

orders, offering a promising adjunct to facilitate the diagnosis and therapeutics.

Introduction

Epilepsy is a heterogeneous neurological disorder charac-

terized by recurrent and unpredictable epileptic seizures,

affecting approximately 50 million people worldwide.1

Despite the availability of pharmacological treatments, a

significant proportion of people with epilepsy (30%)

experience drug-resistant epilepsy (DRE) and do not

respond to conventional therapies.2 Autoimmune enceph-

alitis (AE) describes a group of autoantibody-mediated

brain disorders characterized by seizures and neuropsychi-

atric symptoms with autoantibodies targeting neuroglial

cell-surface proteins.3–5 AE typically gives rise to acute

seizures which, like DRE, are often refractory to anti-
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seizure medications (ASMs).4,5 Further, many series in AE

patients, especially those with leucine-rich glioma inacti-

vated 1 (LGI1)-antibodies, identify cases originally diag-

nosed with a non-autoimmune form of epilepsy.6–8 More

rarely, acute AE gives rise to chronic epilepsy.9,10

Timely diagnosis and initiation of immunotherapies are

crucial for optimal prognosis in AE.6,11 The diagnosis of

AE typically involves a combination of clinical features,

laboratory antibody tests and imaging.6–12 While the detec-

tion of neuronal surface antibodies (NSAbs) is a valuable

tool, it can be expensive, laborious, and time-sensitive,

leading to potential delays in treatment initiation. More-

over, false positive antibody test results are well-recognized

to harm patient care7 and, as there are many seronegative

cases, negative test results do not exclude AE.13 Hence, fur-

ther adjunctive diagnostics are valuable to AE patients.

They may also guide therapy and prognosis. Currently, no

robust stratifying biomarkers exist.

Nuclear magnetic resonance (NMR) metabolomics, in

combination with multivariate statistical techniques and

machine learning, has emerged as a valuable approach for

identification of potential biomarkers and disturbed meta-

bolic pathways, as well as the diagnosis and staging of

diseases.14 Recent studies have demonstrated the value of

NMR metabolomics in detecting systemic inflammation

and autoantibody-mediated pathology in central nervous

system (CNS) diseases with overlapping symptoms.15,16

Previous work has demonstrated 1H NMR metabolomics

can successfully discriminate between subsets of

autoantibody-mediated psychosis, distinguish multiple

sclerosis from autoantibody-mediated neuromyelitis optica

spectrum disorder (NMOSD), and differentiate various

subtypes of antibody-mediated NMOSD.15,16 In this study,

we hypothesized that NMR metabolomics coupled with

robust multivariate analytical methods might distinguish

AE from DRE and, further, differentiate three of the com-

monest subtypes of AE, associated with autoantibodies

against LGI1, N-methyl-D-aspartate receptor (NMDAR)

and contactin-associated protein-like 2 (CASPR2).

Methods

Human subjects

AE and DRE patients were recruited from John Radcliffe

Hospital, Oxford, UK. The study was approved by the

Research Ethics Committee (REC16/YH/0013) and all par-

ticipants gave written informed consent. Matched clinical

information was retrieved from the electronic patient

record (Cerner Millenium). AE patients were diagnosed

based on their clinical syndrome in association with serum

and CSF antibody positivity at the peak of their disease

determined by fixed and live cell-based assays for CASPR2

and NMDAR-antibodies, and serum positivity alone for

LGI1-antibodies, as described previously.17,18 Inclusion cri-

teria for DRE patients were stipulated such that: (1) DRE

patients with known positive antibody results were

excluded from the analysis, and (2) Patient records of the

DRE patients were reviewed to further exclude cases poten-

tially associated with autoimmune etiologies. Blood was

collected in BDTM VacutainerTM Lithium Heparin tubes (BD

367886) and plasma was isolated by centrifugation at 500 g

for 10 min at room temperature prior to storage at �80°C.

NMR spectroscopy

On the day of NMR data acquisition, plasma samples

were defrosted at room temperature before being centri-

fuged at 100,000 g for 30 min at 4°C. 150 lL of the

plasma samples were then mixed with 400 lL NMR

buffer (75 mM phosphate buffer in D2O, pH 7.4) and

transferred to a 5 mm borosilicate NMR tube (Norell).

NMR metabolomics analysis of plasma was conducted

as previously described.15 NMR spectroscopy was per-

formed using a 700-MHz Bruker AVIII spectrometer

(Department of Chemistry, University of Oxford) operat-

ing at 16.4 T equipped with a 1H [13C/15N] TCI cryo-

probe at 298 K. 1H spectra of human plasma were

acquired using a spin-echo Carr–Purcell–Meiboom–Gill
(CPMG) sequence (s interval of 400 ls, 80 loops, 40 ms

total filter time, 32 data collections, 1.5 s acquisition time,

relaxation delay of 2 s, fixed receiver gain) to suppress

broad signals arising from large molecular weight plasma

components. For quality control, pooled samples were

spread throughout the run to monitor technical variation.

Resulting free induction decays were zero-filled by a

factor of 2 and multiplied by an exponential function cor-

responding to 0.30 Hz line broadening prior to Fourier

transformation. All spectra were phased, baseline cor-

rected, and referenced to the lactate –CH3 doublet reso-

nance at d = 1.33 ppm, followed by visual inspection for

errors and contaminations (Topspin 4.1, Bruker, Ger-

many). Plasma NMR spectra were rationally divided into

122 spectral bins to avoid overlapping signals, integrated

and normalized by the sum within each sample, account-

ing for any variations in sample dilution (ACD/Labs

Spectrus Processor Academic Edition 12.01, Advanced

Chemistry Development, Inc.). Integral values were pareto

scaled prior to multivariate analysis.

Metabolite assignments for NMR signals was performed

by referencing to literature values,19–22 the Human Meta-

bolome Database,23 and via 2D total correlation spectros-

copy (TOCSY) experiments. Approximately 50

metabolites, including a range of lipoprotein and lipid

species, amino acids, glucose, organic acids, nucleotides,

and amides were identified.
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Statistical analysis

Multivariate analyses were performed in R software 4.1.2

(R Foundation for Statistical Computing, Vienna, Austria)

using in-house R scripts and the ropls package.24 Orthog-

onal partial least squares discriminant analysis (OPLS-

DA), a supervised method, was used to generate diagnos-

tic models and identify significant differences in metabo-

lite levels between groups. The number of orthogonal

components was optimized through 10 repetitions of the

default 7-fold internal cross validation, with the final

number determined by the median value obtained from

the ten repetitions. OPLS-DA models were validated using

a 10-fold external cross validation with 100 repetitions

and permutation testing, as previously described.16 Details

of model optimization and cross validation were

described in Figure S1. Discriminatory variables were

identified by calculating the average of the variable

importance in projection (VIP) scores.

Univariate statistical analyses, such as Student’s t test

or one-way ANOVA, were performed to identify signifi-

cant differences in the mean for each discriminatory

metabolite. Benjamini-Hochberg method was used to

control the false discovery rate at 0.05. Univariate

Receiver Operating Characteristic (ROC) analyses and

multivariate ROC analyses on a combination of features

using logistic regression were performed using MetaboA-

nalyst 5.0.25 For patient demographic and clinical infor-

mation, normality was tested by Anderson-Darling test.

Kruskal-Wallis test with Dunn’s multiple comparisons test

was used to identify significant differences for non-nor-

mal continuous variables. Chi-Square test with Bonferroni

correction for multiple comparisons was used for categor-

ical variables. Adjusted two-tailed p-values ≤0.05 were

considered statistically significant.

Results

Clinical features

The patient cohort (n = 238) comprised 162 DRE

patients, and 76 AE patients including 27 with CASPR2-,

29 with LGI1-, and 20 with NMDAR-antibody encephali-

tis. Baseline demographic and treatment details are sum-

marized in Table 1. The median age of the DRE patients

was 37 years old and 62% were female. As expected,

CASPR2 and LGI1 patients were older compared to DRE

and more were males (89% and 79%, respectively),

whereas NMDAR-antibody encephalitis patients had a

median age of 30 and were predominantly female

(95%).6,17,18 While all DRE patients were receiving ASMs

(100%), the percentage was lower in AE patients (54%)

who frequently received immunotherapies. Again, as

expected, more AE patients (19% CASPR2-, 24% LGI1-,

40% NMDAR-antibody patients) had systemic tumors,

also focal and generalized seizures contrasted across the

cohorts. DRE patients were relatively stable and provided

their blood samples during routine outpatient clinics,

while AE patients were potentially sampled both during

acute in-patient stays and at outpatient clinics.

NMR plasma metabolomics coupled with
OPLS-DA models discriminate autoimmune
encephalitis patients from those with drug-
resistant epilepsy

To compare plasma metabolomic signatures between

DRE (n = 162) and AE patients (n = 76), 1H NMR spec-

troscopy was performed with predictive models of OPLS-

DA using 10-fold external cross validation. Cross valida-

tion and permutation testing showed that the model was

able to identify AE patients in the test set from DRE

patients with 87.0 � 3.1% accuracy, 87.9 � 3.4% sensi-

tivity and 86.3 � 3.6% specificity and the model per-

formed significantly better than random chance

(50.0 � 5.3% accuracy, 50.0 � 6.9% sensitivity,

49.8 � 7.4% specificity, p <0.001, Kolmogorov–Smirnov

test), indicating it is both robust and not a result of over-

fitting (Fig. 1A–C, Table S1). In addition, NMR spectra

were also obtained for three subjects selected to have

post-AE epilepsy who had AE for 2–3 years before being

treated as epilepsy with only ASMs (refer to Table S2 for

detailed case information). Notably, when applying this

OPLS-DA model to predict these three patients using

their plasma metabolome, all three patients were classified

as epilepsy, clustered with the DRE group (Fig. S2).

Mean spectra from DRE patients and AE patients

(Fig. 1D) show discriminatory metabolites derived from

the model. Compared to DRE patients, AE patients had

increased plasma lactate, glucose and decreased high-den-

sity lipoprotein (HDL, fatty acyl chain –(CH2)n–, –CH3

in lipoproteins, the spectral integral predominated by

HDL), phosphatidylcholine (N+(CH3)3, choline-contain-

ing phospholipids, predominantly phosphatidylcholine),

unsaturated fatty acids (UFAs, –CH2CH = from the

unsaturated fatty acyl components) and albumin (lysyl

moiety of albumin)22 (Table S3).

Univariate ROC analysis was conducted for each of the

most discriminatory metabolites, indicating their individ-

ual potential to classify AE and DRE patients with an

AUC ranging from 0.59 to 0.72 (Fig. 2A–F). Multivariate

ROC analysis coupled with logistic regression on all the

11 most discriminatory resonances yielded an AUC of

0.820 (95% CI: 0.744–0.907). Notably, when selecting lac-

tate, HDL (–CH3), the albumin lysyl moiety, and glucose,

four features with lower covariation that are routinely
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measurable in the clinical setting, the ROC analysis

showed a comparable AUC of 0.820 (95% CI: 0.742–
0.892) (Fig. 2G).

Distinct metabolomic signatures identified
for each AE subtype

Upon further examination of the discriminatory metabo-

lites, each AE subtype appeared to have its own unique

metabolic signature apart from the shared metabolomic

perturbation in HDL –(CH2)n–, HDL –CH3, phosphati-

dylcholine and the albumin lysyl moiety (Fig. 3A). Plasma

lactate levels were increased in LGI1-antibody encephalitis

patients, and, even more so, in CASPR2-antibody enceph-

alitis patients. Elevated plasma glucose and decreased

UFA were only observed in the plasma of LGI1-antibody

patients. Individual OPLS-DA models were developed

for each AE subtype, compared to the DRE group. These

Table 1. Patient demographic and clinical information.

DRE (N = 162)

AE-CASPR2

(N = 27)

AE-LGI1

(N = 29)

AE-NMDAR

(N = 20)

p value (adjusted

p value)

Age, median (IQR) 37 (27, 48)C L 74 (66, 78)D N 72 (57, 73)D N 30 (23, 58)C L <0.001 (<0.001)

Sex, n (%)

Female 100 (62%)C L N 3 (11%)D N 6 (21%)D N 19 (95%)C D L <0.001 (<0.001)

BMI, median (IQR) 27 (24, 31) 27 (23, 28) 26 (20, 31) 28 (21, 32) 0.7 (>0.9)

Unknown 60 (37%) 20 (74%) 21 (72%) 10 (50%)

Use of ASMs, n (%) <0.001 (<0.001)

Yes 162 (100%)C L N 17 (63%)D N 20 (69%)D N 4 (20%)C D L

Unknown 0 3 (11%) 2 (7%) 0

Use of steroids, n (%) <0.001 (<0.001)

Yes 1 (1%)e,C L N 6 (22%)D L 17 (59%)C D 7 (35%)D

Unknown 0 1 (4%) 2 (7%) 1 (5%)

Use of other immunotherapies, n (%) <0.001 (<0.001)

Yes 2 (1%)C L N 9 (33%)D 11 (38%)D 9 (45%)D

Unknown 0 1 (4%) 2 (7%) 0

Identified tumor(s), n (%)a 0.0013 (0.010)

Yes 21 (13%)L N 5 (19%) 7 (24%)D 8 (40%)D

Unknown 0 7 (26%) 12 (41%) 0

Seizure semiology, n (%) <0.001 (<0.001)

Focal seizures 121 (75%)L N 19 (70%) 24 (83%)D 1 (5%)D

Focalb 65 19 20 1

Focal + FBTCSc 56 0 4 0

Generalized 39 (24%)L N 1 (4%) 1 (3%)D 5 (25%)D

GTCS 36 1 1 5

Otherd 3 0 0 0

Unknown 2 (1%) 7 (26%) 4 (14%) 14 (70%)

Disease duration (from onset to sampling date,

months), median (IQR)

160 (180)C L N 38 (38)D 25 (46)D 16 (24)D <0.001 (<0.001)

Unknown 1 (1%) 0 0 0

Seizure-free days (from last seizure to sampling date),

median (IQR)

16 (143)C L N 646 (1369)D 272 (726)D 814 (761)D <0.001 (<0.001)

Never had seizures 0 7 (26%) 2 (7%) 12 (60%)

Unknown 0 2 (7%) 3 (10%) 2 (10%)

Kruskal-Wallis test with Dunn’s multiple comparisons test was used to identify significant differences of each class in age, BMI, disease duration

and seizure-free days. Pairwise Chi-Square test with Bonferroni correction for multiple comparisons were used for categorical variables. Omnibus

p-values and adjusted omnibus p-values with Bonferroni correction across demographic variables were reported. D, C, L, and N indicate a signifi-

cant difference (p < 0.05) exists with DRE, CASPR2, LGI1, NMDAR, respectively, in the corresponding post-hoc multiple comparisons.

GTCS, generalized tonic–clonic seizure; IQR, interquartile range.
aIdentified tumors encompass any tumor (including cancer) detected anywhere in the whole body (including brain), as documented in the elec-

tronic patient records at the time of blood sampling.
bIncludes focal aware seizures and focal impaired awareness seizures.
cFocal seizures and focal to bilateral tonic–clonic seizures (FBTCS).
dAbsence seizures, myoclonus.
eThe patient was on lifelong hydrocortisone replacement due to childhood-onset hypopituitarism, unrelated to autoimmune pathology.
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models achieved cross validation accuracies of

80.0 � 5.1%, 82.3 � 5%, and 80.4 � 7.3% for distin-

guishing CASPR2-, LGI1- and NMDAR-antibody enceph-

alitis, respectively, from DRE (Table S1). Notably, distinct

metabolite signatures were identified for each subtype,

including lactate, HDL (–CH3, �(CH2)n�), and phospha-

tidylcholine for CASPR2; HDL (–CH3, �(CH2)n�), lac-

tate, phosphatidylcholine, glucose and UFA for LGI1; and

phosphatidylcholine, HDL (�CH3, �(CH2)n�), and gly-

coprotein A (GlycA) for NMDAR (Fig. 3A, Fig. S3).

Pairwise OPLS-DA models were built within the three

AE subtypes to further study if each subtype can be strati-

fied based on the differences in the metabolomic alter-

ation. The accuracies of the models (CASPR2 vs. LGI1,

CASPR2 vs. NMDAR, LGI1 vs. NMDAR) were

69.2 � 3.0%, 68.9 � 5.4%, and 77.5 � 5.0%, respectively

(Table S1). The significantly superior performance of the

models than random chance (p <0.001, Kolmogorov–
Smirnov test) indicated distinct metabolomic alterations

exist within the three AE subtypes (Figs. S4 and S5,

Table S4). Specific alterations in plasma metabolome in

each AE subtype relative to DRE and each other are sum-

marized in the Venn diagram (Fig. 3B).

Potential confounding factors including
seizure semiologies

To investigate whether different seizure semiologies or the

seizure proximity (Table 1) were reflected in the plasma

metabolome, OPLS-DA models were built to compare

patients with focal seizures (n = 121) versus patients with

generalized seizures (n = 39). However, the 10-fold cross

validation demonstrated a mean accuracy of 55.8 � 5.9%,

only marginally superior to random chance. Even when

employing a subset of patients with focal aware/impaired

awareness seizures (n = 20) matched with patients

experiencing generalized tonic–clonic seizures (GTCS)

(n = 20) in terms of age, gender, and seizure-free days,

the model yielded a mean accuracy of 57.0 � 4.7%. Simi-

larly, when assessing the impact of seizure proximity by

stratifying patients who had seizures in less than 15 days

(n = 79) versus those without seizures for more than

300 days (n = 38), the model had a mean accuracy of

58.8 � 6.0%. These results suggest that the impact of epi-

lepsy on the blood metabolome is independent of the

location, the type, and the proximity of seizure.

Other potential confounders lie in the observation that

DRE and AE cohorts have multiple differences, as out-

lined in Table 1. To examine the influence of these poten-

tial confounders in our model, scores plots demonstrating

the separation of the two groups were colored according

to each variable to test for observable correlations

(Fig. S6). Among these, age, the use of steroids and other

immunotherapies displayed notable correlations. Conse-

quently, we constructed OPLS-DA models based on

younger (<25, n = 34) versus older (>50, n = 32) DRE

patients, and the model was able to distinguish younger

versus older DRE with a 71.9 � 4.0% cross validation

accuracy. Nonetheless, the discriminatory metabolite reso-

nances responsible for the age separation were mainly

very-low-density lipoprotein –(CH2)n– (VLDL, 1.26–
1.32 ppm) and unsaturated fatty acids –HC=CH– (5.25–
5.38 ppm), different from those driving the separation

between DRE and AE (Fig. S7).

A substantial proportion of the AE cohort was under-

going treatment with steroids and/or other immunother-

apies. The OPLS-DA model was able to distinguish

between AE patients who were using steroids (n = 30)

and those who were not (n = 42), with a cross validation

accuracy of 65.4 � 4.1%. AE patients on steroids exhib-

ited elevated glucose and GlycA levels (Fig. S8). However,

the OPLS-DA model yielded only a 55.7 � 4.5% cross

validation accuracy to identify AE patients receiving other

immunotherapies (n = 44 + 25) (Fig. S9). Therefore,

while steroid administration may contribute marginally to

the elevation of glucose levels in the AE versus DRE

cohorts, the AE pathology remains the primary factor dis-

tinguishing their plasma metabolomics.

Discussion

In this study, we demonstrated the ability of metabolo-

mics to differentiate patients with AE from those with

DRE, and to separate three common subtypes of

autoantibody-mediated AE. To our knowledge, this repre-

sents the first biomarker offering these discriminatory

properties. While autoantibody assays will likely remain

the gold standards, our NMR-based blood test offers a

promising adjunct to facilitate the diagnosis of AE given

the speed of testing, affordability, and high diagnostic

accuracy. Metabolomic testing may be especially valuable

when patients present with seizures in the absence of

obvious causes such as traumatic brain injury, neoplasms,

and infectious disease. Moreover, as autoantibody assays

only detect known antibodies, it is conceivable that

patients harboring unknown NSAbs may be detected with

NMR approaches.26,27 While prior research has explored

non-antibody-based biomarkers such as neurofilament

light chain (NfL) and cytokines,28–31 these have limita-

tions, such as NfL’s susceptibility to age and various con-

founding factors. Hence, the unique advantages offered

by our NMR metabolomics methods in AE diagnosis and

subtype differentiation may prove valuable for several

applications.

In this study, we have found that different AE subtypes

(CASPR2, LGI1, NMDAR) have both overlapping and
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Figure 3. Specific alteration in plasma metabolome in each AE subtype. (A) Heatmap of percentage changes in key metabolites identified by the

OPLS-DA models of AE versus DRE, and in each AE subtype relative to the DRE group. Numbers in the square brackets represent the boundary of

corresponding spectral region in ppm. “/” indicates the mentioned metabolites are overlapped in the spectral region. Metabolite names in square

brackets refers to non-dominant overlapping metabolites also found in that spectral region. * Significance in mean compared to DRE group (q < 0.05

in univariate analysis). (B) Venn diagram illustrating metabolic signatures of AE subtypes. Metabolites in black were identified from OPLS-DA models

of AE versus DRE, and each AE subtype versus DRE, while metabolites in gray were identified from OPLS-DA models of pairwise AE subtype

comparisons. HDL, high-density lipoprotein. UFA, unsaturated fatty acids. PUFA, polyunsaturated fatty acids. GlycA/B, Glycoprotein A/B.
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distinct metabolome perturbations, suggesting the exis-

tence of both shared and distinct pathogenic mechanisms.

Here we show that the common plasma metabolomic sig-

natures shared by AE patients include decreased levels of

HDL (fatty acyl chain –(CH2)n–, –CH3 resonances), phos-

phatidylcholine and albumin (lysyl moiety). While the

clinical signs in AE are largely associated with the interac-

tion with their respective target antigens in the CNS,

there is also some peripheral expression of these proteins

(e.g. LGI1), where autoimmune response might have con-

tributed to the altered blood chemistry profiles that we

have observed.32

Lipid profiles, especially with decreased HDL levels, are

implicated in inflammatory and autoimmune diseases.

For example, low HDL cholesterol and high triglycerides

levels have been associated with higher levels of multiple

sclerosis disability, as well as poor recovery and relapse in

NMOSD.33–36 Additionally, several studies have found

lower HDL-cholesterol levels in individuals with

NMDAR- antibody encephalitis compared to healthy con-

trols, and associated with a poorer prognosis and

increased likelihood of relapse.37–39

Decreased levels of –N(CH3)3 resonances from phos-

phatidylcholine were found in AE plasma in our study,

and were highly positively correlated with HDL –CH3

levels (r = 0.95, p <0.001, Fig. S10). As phosphatidylcho-

line is the main phospholipid present in plasma and an

integral component of lipoproteins (particularly HDL)

the observed decrease in phosphatidylcholine levels may

be attributed to the reduced levels of HDL. Additionally,

the decreased levels of phosphatidylcholine may occur

secondary to AE-induced inflammation, as cellular lipid

profiles are modulated following inflammatory stress,

including a decrease in phosphatidylcholines.40

Consistent with our findings, significantly lower albu-

min levels have been reported in AE patients, with plasma

albumin levels decreased in NMDAR-antibody encephali-

tis relative to healthy controls, and pre-treatment low

plasma albumin associated with worse prognosis in

AE.41,42 Albumin is a negative acute-phase reactant and

reduced serum albumin levels have been shown to corre-

late with systemic and central inflammatory disease, which

could be due to increased albumin degradation caused by

a high catabolic rate and elevated albumin transudation

resulting from increased capillary permeability.43,44 Thus,

taken together, the significant decreases observed in lipo-

protein and albumin resonances of AE patients observed

here, are consistent with an inflammatory metabolic

signature.

Our study has also demonstrated that various subtypes

of AE exhibit distinct metabolic changes, aligning with

the observation that different NSAbs are often associated

with distinct clinical syndromes and prognoses.12 Elevated

lactate levels were observed in both CASPR2- and LGI1-

antibody patients, especially for CASPR2-antibody

patients, while elevated plasma glucose levels were found

in CASPR2-antibody AE only. GlycA levels were higher in

NMDAR- and CASPR2-antibody patients but lower in

LGI1-antibody patients, while UFA levels were decreased

in LGI1-antibody encephalitis only.

Lactate is one of the most enriched by-products of cel-

lular metabolism in tissues with immune cell infiltration.

Studies have indicated that the activation of inflammatory

immune cells can cause a shift from oxidative phosphory-

lation to aerobic glycolysis, resulting in an increase in

lactate.45 For example, elevated levels of serum lactate,

have been reported in individuals with multiple sclerosis

and the increases are positively correlated with increasing

disability.46,47

GlycA/B, NMR specific biomarkers of systemic inflam-

mation, derive from the glycan moieties of acute-phase

proteins.48 Studies have reported elevated levels of GlycA

in patients with autoimmune diseases like rheumatoid

arthritis and systemic lupus erythematosus.49,50 Therefore,

the increased GlycA levels observed in NMDAR-antibody

patients are potentially indicative of ongoing inflamma-

tory processes in this patient population. However, alone,

GlycA is a non-specific marker.48

We acknowledge the limitations of our study, as it did

not include healthy controls nor patients with other

antibody-mediated diseases. Consequently, it is challeng-

ing to assert whether the identified pattern is specific to

AE. Nonetheless, we conducted a comparative analysis

with our prior research, wherein NMR metabolomics

enabled successful stratification of antibody-positive

NMOSD and relapsing remitting multiple sclerosis

patients, along with the identification of an inflammatory

subtype of psychosis associated with VGKC/GlyR

antibody.15,16 Notably, we observed some common signa-

tures in the autoantibody-positive NMOSD group,

including reduced phosphatidylcholine and lactate levels,

along with alterations in lipoprotein profiles.15 Moreover,

a similar profile with reduced phosphatidylcholine and

HDL levels, along with elevated glucose levels was

observed in the VGKC/GlyR antibody-positive psychosis

cohort.16 The shared metabolic signatures in these cohorts

with antibody-mediated diseases underscore the potential

relevance of lipid metabolism and glucose regulation in

various autoimmune and neurological conditions, war-

ranting further exploration of these metabolic pathways

for potential biomarkers or therapeutic targets.

In conclusion, this is the first study to use NMR-based

metabolomics in distinguishing AE patients from DRE

patients, highlighting the diagnostic potential of the

NMR-based blood test for such differentiation. Further-

more, each AE subtype was found to exhibit a distinct
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biochemical signature, providing insights into the distinct

metabolic impact of the different AE target antigens. Yet,

no discriminatory metabolomic signatures were observed

for different seizure semiologies or proximity in the DRE

cohort. However, it is clear that the blood metabolome of

someone experiencing status epilepticus is significantly

different from someone with control epilepsy patients.51

Future work need to validate identified biomarkers exter-

nally in an independent cohort. It will also be important

to explore the applicability of the NMR blood test in

identifying other AE subtypes, seronegative AE patients

and whether the AE metabolomic signature might be used

to predict the persistence of AE.
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