35 research outputs found

    Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at √s = 0.9, 7 and 8 TeV

    No full text
    We present the charged-particle multiplicity distributions over a wide pseudorapidity range (−3.4<η<5.0) for pp collisions at s√= 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator cos(φαφβ)\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and β\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator cos(φα+φβ2Ψ2)\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level

    Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at √sNN=2.76 TeV. The two-particle correlator 〈cos⁡(φα−φβ)〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos⁡(φα+φβ−2Ψ2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level

    Neutral pion and η meson production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    Neutral pion and η meson production in the transverse momentum range 1 < pT < 20 GeV/c have been measured at mid-rapidity by the ALICE experiment at the Large Hadron Collider (LHC) in central and semi-central Pb-Pb collisions at sNN−−−−√ = 2.76 TeV. These results were obtained using the photon conversion method as well as the PHOS and EMCal detectors. The results extend the upper pT reach of the previous ALICE π0 measurements from 12 GeV/c to 20 GeV/c and present the first measurement of η meson production in heavy-ion collisions at the LHC. The η/π0 ratio is similar for the two centralities and reaches at high pT a plateau value of 0.457 ± 0.013stat ± 0.018syst. A suppression of similar magnitude for π0 and η meson production is observed in Pb-Pb collisions with respect to their production in pp collisions scaled by the number of binary nucleon-nucleon collisions. We discuss the results in terms of NLO pQCD predictions and hydrodynamic models. The measurements show a stronger suppression with respect to what was observed at lower center-of-mass energies in the pT range 6 < pT < 10 GeV/c. At pT < 3 GeV/c, hadronization models describe the π0 results while for the η some tension is observed

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of Λ(1520) suppression within a single collision system. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of Λ(1520) suppression in heavy-ion collisions. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Linear and non-linear flow modes in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n>3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n=4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |η|<0.8 and the transverse momentum range 0.2<pT<5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system

    φ meson production at forward rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    ϕ meson measurements provide insight into strangeness production, which is one of the key observables for the hot medium formed in high-energy heavy-ion collisions. ALICE measured ϕ production through its decay in muon pairs in Pb-Pb collisions at sNN−−−√ = 2.76 TeV in the intermediate transverse momentum range 2<pT<5 GeV/c and in the rapidity interval 2.5<y<4. The ϕ yield was measured as a function of the transverse momentum and collision centrality. The nuclear modification factor was obtained as a function of the average number of participating nucleons. Results were compared with the ones obtained via the kaon decay channel in the same pT range at midrapidity. The values of the nuclear modification factor in the two rapidity regions are in agreement within uncertainties
    corecore