1,493 research outputs found

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio

    A Thirst for Empire: How Tea Shaped the Modern World

    Get PDF

    The Italian air force sea level pressure data set (1951-2000)

    Get PDF
    A set of 39 homogenised sea level pressure records, extracted from the Italian Air Force dataset (1951-2000), is introduced and analysed for trends. The data consist of 3-hourly observations. Daily mean pressures are obtained using a method that allows biases to be avoided due to the presence of a high fraction of days that do not have all 8 observations. Trend analysis is performed on seasonal and yearly basis and concerns both the individual station records and the series of their averages. The results show a highly significant positive trend in winter and yearly air pressure all over Italy. It is mainly due to a change-point around 1980. The Italian air pressure records are also compared with the NCAR/NCEP and UKMO gridded data sets. The results give evidence that gridded data capture most of the trend and variability of air pressure over Italy, even if NCAR/NCEP data display some significant inhomogeneities with respect to the station records

    Magnetic and vibrational properties of high-entropy alloys

    Get PDF
    The magnetic properties of high-entropy alloys based on equimolar FeCoCrNi were investigated using vibrating sample magnetometry to determine their usefulness in high-temperature magnetic applications. Nuclear resonant inelastic x-ray scattering measurements were performed to evaluate the vibrational entropy of the ^(57)Fe atoms and to infer chemical order. The configurational and vibrational entropy of alloying are discussed as they apply to these high-entropy alloys

    Quantum control in artificial neurons with superconductor-ionic memory inserted in the feedback

    Full text link
    To improve artificial intelligence/autonomous systems and help with treating neurological conditions, there's a requirement for artificial neuron hardware that mimics biological. We examine experimental artificial neurons with quantum tunneling memory using 4.2 nm of ionic Hafnium oxide and Niobium metal inserted in the positive and negative feedback of an oscillator. These neurons have adaptive spiking behavior and hybrid non-chaotic/chaotic modes. When networked, they output with strong itinerancy. The superconducting state at 8.1 Kelvin results in Josephson tunneling with signs that the ionic states are influenced by quantum coherent control in accordance with quantum master equation calculations of the expectation values and correlation functions with a calibrated time dependent Hamiltonian. We experimentally demonstrate a learning network of 4 artificial neurons, and the modulation of signals.Comment: Adaptive behavior, itinerancy, and quantum control in an artificial neuron with two superconductor-ionic tunneling memorie

    The enhancement of ferromagnetism in uniaxially stressed diluted magnetic semiconductors

    Full text link
    We predict a new mechanism of enhancement of ferromagnetic phase transition temperature TcT_c in uniaxially stressed diluted magnetic semiconductors (DMS) of p-type. Our prediction is based on comparative studies of both Heisenberg (inherent to undistorted DMS with cubic lattice) and Ising (which can be applied to strongly enough stressed DMS) models in a random field approximation permitting to take into account the spatial inhomogeneity of spin-spin interaction. Our calculations of phase diagrams show that area of parameters for existence of DMS-ferromagnetism in Ising model is much larger than that in Heisenberg model.Comment: Accepted for publication in Phys. Rev.

    High-harmonic spectroscopy of transient two-center interference calculated with time-dependent density-functional theory

    Get PDF
    We demonstrate high-harmonic spectroscopy in many-electron molecules using time-dependent density-functional theory. We show that a weak attosecond-pulse-train ionization seed that is properly synchronized with the strong driving mid-infrared laser field can produce experimentally relevant high-harmonic generation (HHG) signals, from which we extract both the spectral amplitude and the target-specific phase (group delay). We also show that further processing of the HHG signal can be used to achieve molecular-frame resolution, i.e., to resolve the contributions from rescattering on different sides of an oriented molecule. In this framework, we investigate transient two-center interference in CO2 and OCS, and how subcycle polarization effects shape the oriented/aligned angle-resolved spectra. (C) 2019 Author(s)

    Brief history of early lithium-battery development

    Get PDF
    Lithium batteries are electrochemical devices that are widely used as power sources. This history of their development focuses on the original development of lithium-ion batteries. In particular, we highlight the contributions of Professor Michel Armand related to the electrodes and electrolytes for lithium-ion batteries
    corecore