56 research outputs found

    Towards a new modelling of gas flows in a semi-analytical model of galaxy formation and evolution

    Full text link
    We present an extended version of the semi-analytical model, GalICS. Like its predecessor, eGalICS applies a post-treatment of the baryonic physics on pre-computed dark-matter merger trees extracted from an N-body simulation. We review all the mechanisms that affect, at any given time, the formation and evolution of a galaxy in its host dark-matter halo. We mainly focus on the gas cycle from the smooth cosmological accretion to feedback processes. To follow this cycle with high accuracy we introduce some novel prescriptions: i) a smooth baryonic accretion with two phases: a cold mode and a hot mode built on the continuous dark-matter accretion. In parallel to this smooth accretion, we implement the standard photoionisation modelling to reduce the input gas flow on the smallest structures. ii) a complete monitoring of the hot gas phase. We compute the evolution of the core density, the mean temperature and the instantaneous escape fraction of the hot atmosphere by considering that the hot gas is in hydrostatic equilibrium in the dark-matter potential well, and by applying a principle of conservation of energy on the treatment of gas accretion, supernovae and super massive black hole feedback iii) a new treatment for disc instabilities based on the formation, the migration and the disruption of giant clumps. The migration of such clumps in gas-rich galaxies allows to form pseudo-bulges. The different processes in the gas cycle act on different time scales, and we thus build an adaptive time-step scheme to solve the evolution equations. The model presented here is compared in detail to the observations of stellar-mass functions, star formation rates, and luminosity functions, in a companion paper

    The far infra-red SEDs of main sequence and starburst galaxies

    Get PDF
    We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies (M⋆≳1010M_{\star}\gtrsim10^{10} h−1h^{-1}M⊙_{\odot}) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass (M⋆M_{\star}) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and M⋆M_\star, up to redshift z∼6z\sim6. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts (0.5≲z≲40.5\lesssim z\lesssim4) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at z≳2z\gtrsim2, selected here to have elevated sSFRs>10×>10\times the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.Comment: 20 pages, 13 figures. Accepted to MNRA

    Galaxy stellar mass assembly: the difficulty matching observations and semi-analytical predictions

    Full text link
    Semi-analytical models (SAMs) are currently the best way to understand the formation of galaxies within the cosmic dark-matter structures. While they fairly well reproduce the local stellar mass functions, correlation functions and luminosity functions, they fail to match observations at high redshift (z > 3) in most cases, particularly in the low-mass range. The inconsistency between models and observations indicates that the history of gas accretion in galaxies, within their host dark-matter halo, and the transformation of gas into stars, are not well followed. Hereafter, we briefly present a new version of the GalICS semi-analytical model. We explore the impacts of classical mechanisms, such as supernova feedback or photoionization, on the evolution of the stellar mass assembly. Even with a strong efficiency, these two processes cannot explain the observed stellar mass function and star formation rate distribution and some other relations. We thus introduce an ad-hoc modification of the standard paradigm, based on the presence of a \textit{no-star-forming} gas component, and a concentration of the star-forming gas in galaxy discs. The main idea behind the existence of the no-star-forming gas reservoir is that only a fraction of the total gas mass in a galaxy is available to form stars. The reservoir generates a delay between the accretion of the gas and the star formation process. This new model is in much better agreement with the observations of the stellar mass function in the low-mass range than the previous models, and agrees quite well with a large set of observations, including the redshift evolution of the specific star formation rate. However, it predicts a large fraction of no-star-forming baryonic gas, potentially larger than observed, even if its nature has still to be examined in the context of the missing baryon problem

    Panchromatic Study of the First Galaxies with Large ALMA Programs

    Get PDF
    Thanks to deep optical to near-IR imaging and spectroscopy, significant progress is made in characterizing the rest-frame UV to optical properties of galaxies in the early universe (z > 4). Surveys with Hubble, Spitzer, and ground-based facilities (Keck, Subaru, and VLT) provide spectroscopic and photometric redshifts, measurements of the spatial structure, stellar masses, and optical emission lines for large samples of galaxies. Recently, the Atacama Large (Sub) Millimeter Array (ALMA) has become a major player in pushing studies of high redshift galaxies to far-infrared wavelengths, hence making panchromatic surveys over many orders of frequencies possible. While past studies focused mostly on bright sub-millimeter galaxies, the sensitivity of ALMA now enables surveys like ALPINE, which focuses on measuring the gas and dust properties of a large sample of normal main-sequence galaxies at z > 4. Combining observations across different wavelengths into a single, panchromatic picture of galaxy formation and evolution is currently and in the future an important focus of the astronomical community.Comment: 4 pages, 2 figures. Submitted to Proceedings IAU Symposium No. 341, 201

    The Main Sequences of Star-Forming Galaxies and Active Galactic Nuclei at High Redshift

    Get PDF
    We provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences of starforming galaxies and active galactic nuclei at high redshift z ≳\gtrsim 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent SFR functions based on the latest UV/far-IR data from HST/Herschel, and re- lated statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time coordinated processes

    Clustering, host halos and environment of z∼\sim2 galaxies as a function of their physical properties

    Get PDF
    Using a sample of 25683 star-forming and 2821 passive galaxies at z∼2z\sim2, selected in the COSMOS field following the BzK color criterion, we study the hosting halo mass and environment of galaxies as a function of their physical properties. Spitzer and Herschel provide accurate SFR estimates for starburst galaxies. We measure the auto- and cross-correlation functions of various galaxy sub-samples and infer the properties of their hosting halos using both an HOD model and the linear bias at large scale. We find that passive and star-forming galaxies obey a similarly rising relation between the halo and stellar mass. The mean host halo mass of star forming galaxies increases with the star formation rate between 30 and 200 M⊙_\odot.yr−1^{-1}, but flattens for higher values, except if we select only main-sequence galaxies. This reflects the expected transition from a regime of secular co-evolution of the halos and the galaxies to a regime of episodic starburst. We find similar large scale biases for main-sequence, passive, and starburst galaxies at equal stellar mass, suggesting that these populations live in halos of the same mass. We detect an excess of clustering on small scales for passive galaxies and showed, by measuring the large-scale bias of close pairs, that this excess is caused by a small fraction (∼16\sim16%) of passive galaxies being hosted by massive halos (∼3×1013\sim 3 \times 10^{13} M⊙_\odot) as satellites. Finally, extrapolating the growth of halos hosting the z∼\sim2 population, we show that M⋆∼1010_\star \sim 10^{10} M⊙_\odot galaxies at z∼\sim2 will evolve, on average, into massive (M⋆∼1011_\star \sim 10^{11} M⊙_\odot), field galaxies in the local Universe and M⋆∼1011_\star \sim 10^{11} M⊙_\odot galaxies at z=2 into local, massive, group galaxies. The most massive main-sequence galaxies and close pairs of massive, passive galaxies end up in today's clusters.Comment: 18 pages, 16 figures, Accepted by A&

    Illuminating the Dark Side of Cosmic Star Formation II. A second date with RS-NIRdark galaxies in COSMOS

    Full text link
    About 12 billion years ago, the Universe was first experiencing light again after the dark ages, and galaxies filled the environment with stars, metals and dust. How efficient was this process? How fast did these primordial galaxies form stars and dust? We can answer these questions by tracing the Star Formation Rate Density (SFRD) back to its widely unknown high redshift tail, traditionally observed in the Near-InfraRed (NIR), Optical and UV bands. Thus, the objects with a high amount of dust were missing. We aim to fill this knowledge gap by studying Radio Selected NIR-dark (\textit{RS-NIRdark}) sources, i.e. sources not having a counterpart at UV-to-NIR wavelengths. We widen the sample by Talia et al. (2021) from 197 to 272 objects in the COSMic evolution Survey (COSMOS) field, including also photometrically contaminated sources, previously excluded. Another important step forward consists in the visual inspection of each source in the bands from u* to MIPS-24μ\mum. According to their "environment" in the different bands, we are able to highlight different cases of study and calibrate an appropriate photometric procedure for the objects affected by confusion issues. We estimate that the contribution of RS-NIRdark to the Cosmic SFRD at 3<<z<<5 is ∼\sim10--25%\% of that based on UV-selected galaxies

    Using ALMA to resolve the nature of the early star-forming large-scale structure PLCK G073.4-57.5

    Get PDF
    Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of >2000 high-z candidate structures has been found using Planck's all-sky submm maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. In order to resolve and characterise the individual galaxies we targeted the eight brightest SPIRE sources in the centre of the Planck peak PLCK G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with data from IRAC, WIRCam J,K, and SCUBA-2. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy in 2.4 arcmin^2. The ALMA source density is 8-30 times higher than average background estimates and larger than seen in typical 'proto-cluster' fields. We were able to match all but one of the ALMA sources to a NIR counterpart. The most significant (four) SCUBA-2 sources are not included in the ALMA pointings, but we find an 8sigma stacking detection of the ALMA sources in the SCUBA-2 map at 850 um. We derive photo-z, L_IR, SFR, stellar mass, T_dust, M_dust for all of the ALMA galaxies; the photo-zs identify two groups each of five sources, at z~1.5 and 2.4. The two groups show two 'red sequences' (i.e. similar NIR [3.6]-[4.5] colours and different J-K colours). The majority of the ALMA-detected galaxies are on the SFR versus stellar mass main sequence, and half of the sample is more massive than the characteristic stellar mass at the corresponding redshift. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z~1.54. We performed an analysis of star-formation efficiencies and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1<z<3 cluster and proto-cluster members.Comment: 26 pages, revised version, Astronomy & Astrophysics accepte

    Ubiquitous Molecular Outflows in z > 4 Massive, Dusty Galaxies II. Momentum-Driven Winds Powered by Star Formation in the Early Universe

    Full text link
    Galactic outflows of molecular gas are a common occurrence in galaxies and may represent a mechanism by which galaxies self-regulate their growth, redistributing gas that could otherwise have formed stars. We previously presented the first survey of molecular outflows at z > 4 towards a sample of massive, dusty galaxies. Here we characterize the physical properties of the molecular outflows discovered in our survey. Using low-redshift outflows as a training set, we find agreement at the factor-of-two level between several outflow rate estimates. We find molecular outflow rates 150-800Msun/yr and infer mass loading factors just below unity. Among the high-redshift sources, the molecular mass loading factor shows no strong correlations with any other measured quantity. The outflow energetics are consistent with expectations for momentum-driven winds with star formation as the driving source, with no need for energy-conserving phases. There is no evidence for AGN activity in our sample, and while we cannot rule out deeply-buried AGN, their presence is not required to explain the outflow energetics, in contrast to nearby obscured galaxies with fast outflows. The fraction of the outflowing gas that will escape into the circumgalactic medium (CGM), though highly uncertain, may be as high as 50%. This nevertheless constitutes only a small fraction of the total cool CGM mass based on a comparison to z~2-3 quasar absorption line studies, but could represent >~10% of the CGM metal mass. Our survey offers the first statistical characterization of molecular outflow properties in the very early universe.Comment: ApJ accepted. 25 pages, 16 figures. Data and tables from Papers I and II available at https://github.com/spt-smg/publicdat
    • …
    corecore