22 research outputs found

    Diagnostic validity of early-onset obsessive-compulsive disorder in the Danish Psychiatric Central Register:findings from a cohort sample

    Get PDF
    Employing national registers for research purposes depends on a high diagnostic validity. The aim of the present study was to examine the diagnostic validity of recorded diagnoses of early-onset obsessive-compulsive disorder (OCD) in the Danish Psychiatric Central Register (DPCR)

    Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function

    Get PDF
    The ribosomal protein L11 (RPL11) integrates different types of stress into a p53‐mediated response. Here, we analyzed the impact of the ubiquitin‐like protein SUMO on the RPL11‐mouse double‐minute 2 homolog‐p53 signaling. We show that small ubiquitin‐related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin‐like protein neural precursor cell‐expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO‐conjugating enzyme, Ubc9, is required for RPL11‐mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53‐mediated cellular response to different types of stress and reveal a previously unknown SUMO‐NEDD8 interplay

    Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function

    Get PDF
    The ribosomal protein L11 (RPL11) integrates different types of stress into a p53-mediated response. Here, we analyzed the impact of the ubiquitin-like protein SUMO on the RPL11-mouse double-minute 2 homolog-p53 signaling. We show that small ubiquitin-related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin-like protein neural precursor cell-expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO-conjugating enzyme, Ubc9, is required for RPL11-mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53-mediated cellular response to different types of stress and reveal a previously unknown SUMO-NEDD8 interplay.-El Motiam, A., Vidal, S., de la Cruz-Herrera, C. F., Da Silva-Alvarez, S., Baz-Martinez, M., Seoane, R., Vidal, A., Rodriguez, M. S., Xirodimas, D. P., Carvalho, A. S., Beck, H. C., Matthiesen, R., Collado, M., Rivas, C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function

    A Computational Tool for Analysis of Mass Spectrometry Data of Ubiquitin-Enriched Samples

    No full text
    International audienceMass spectrometry data on ubiquitin and ubiquitin-like modifiers are becoming increasingly more accessible, and the coverage progressively deepen as methodologies mature. This type of mass spectrometry data is linked to specific data analysis pipelines for ubiquitin. This chapter describes a computational tool to facilitate analysis of mass spectrometry data obtained on ubiquitin-enriched samples. For example, the analysis of ubiquitin branch site statistics and functional enrichment analysis against ubiquitin proteasome system protein sets are completed with a few functional calls. We foresee that the proposed computational methodology can aid in proximity drug design by, for example, elucidating the expression of E3 ligases and other factors related to the ubiquitin proteasome system

    Isolation and Mass Spectrometry Identification of K48 and K63 Ubiquitin Proteome Using Chain-Specific Nanobodies

    No full text
    International audienceProtein ubiquitylation is an essential mechanism regulating almost all cellular functions in eukaryotes. The understanding of the role of distinct ubiquitin chains in different cellular processes is essential to identify biomarkers for disease diagnosis and prognosis but also to open new therapeutic possibilities. The high complexity of ubiquitin chains complicates this analysis, and multiple strategies have been developed over the last decades. Here, we report a protocol for the isolation and identification of K48 and K63 ubiquitin chains using chain-specific nanobodies associated to mass spectrometry. Different steps were optimized to increase the purification yield and reduce the binding on nonspecific proteins. The resulting protocol allows the enrichment of ubiquitin chain-specific targets from mammalian cells

    Strategies to Identify Recognition Signals and Targets of SUMOylation

    Get PDF
    SUMOylation contributes to the regulation of many essential cellular factors. Diverse techniques have been used to explore the functional consequences of protein SUMOylation. Most approaches consider the identification of sequences on substrates, adaptors, or receptors regulating the SUMO conjugation, recognition, or deconjugation. The large majority of the studied SUMOylated proteins contain the sequence [IVL]KxE. SUMOylated proteins are recognized by at least 3 types of hydrophobic SUMO-interacting motifs (SIMs) that contribute to coordinate SUMO-dependent functions. Typically, SIMs are constituted by a hydrophobic core flanked by one or two clusters of negatively charged amino acid residues. Multiple SIMs can integrate SUMO binding domains (SBDs), optimizing binding, and control over SUMO-dependent processes. Here, we present a survey of the methodologies used to study SUMO-regulated functions and provide guidelines for the identification of cis and trans sequences controlling SUMOylation. Furthermore, an integrative analysis of known and putative SUMO substrates illustrates an updated landscape of several SUMO-regulated events. The strategies and analysis presented here should contribute to the understanding of SUMO-controlled functions and provide rational approach to identify biomarkers or choose possible targets for intervention in processes where SUMOylation plays a critical role

    VEMS: s tool to quantify iTRAQ labeled samples

    No full text
    Comunicaciones a congreso

    Patient-Derived Extracellular Vesicles Proteins as New Biomarkers in Multiple Myeloma - A Real-World Study

    No full text
    Funding Information: This research was funded by the Champalimaud Foundation; by the Fundação para a Ciência e Tecnologia – FCT (Research Grant PTDC/MEC-HEM/30315/2017) and by Sociedade Portuguesa de Hematologia -SPH (Initiation to Investigation Grant 2018).Multiple myeloma (MM) is a hematological malignancy of clonal antibody–secreting plasma cells (PCs). MM diagnosis and risk stratification rely on bone marrow (BM) biopsy, an invasive procedure prone to sample bias. Liquid biopsies, such as extracellular vesicles (EV) in peripheral blood (PB), hold promise as new minimally invasive tools. Real-world studies analyzing patient-derived EV proteome are rare. Here, we characterized a small EV protein content from PB and BM samples in a cohort of 102 monoclonal gammopathies patients routinely followed in the clinic and 223 PB and 111 BM samples were included. We investigated whether EV protein and particle concentration could predict an MM patient prognosis. We found that a high EV protein/particle ratio, or EV cargo >0.6 µg/108 particles, is related to poorer survival and immune dysfunction. These results were supported at the protein level by mass spectrometry. We report a set of PB EV-proteins (PDIA3, C4BPA, BTN1A1, and TNFSF13) with a new biomarker potential for myeloma patient outcomes. The high proteomic similarity between PB and BM matched pairs supports the use of circulating EV as a counterpart of the BM EV proteome. Overall, we found that the EV protein content is related to patient outcomes, such as survival, immune dysfunction, and possibly treatment response.publishersversionpublishe
    corecore