41 research outputs found

    Daily electrical activity in the master circadian clock of a diurnal mammal

    Get PDF
    From eLife via Jisc Publications RouterHistory: collection 2021, received 2021-03-08, accepted 2021-10-09, pub-electronic 2021-11-30Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/P009182/1Funder: Biotechnology and Biological Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/S01764X/1Funder: Biotechnology and Biological Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/N014901/1Funder: Wellcome Trust; FundRef: http://dx.doi.org/10.13039/100004440; Grant(s): 210684/Z/18/ZFunder: National Science Foundation; FundRef: http://dx.doi.org/10.13039/100000001; Grant(s): DMS 155237Funder: Army Research Office; FundRef: http://dx.doi.org/10.13039/100000183; Grant(s): W911NF-16-1-0584Funder: US-UK Fulbright Commission; FundRef: http://dx.doi.org/10.13039/501100000592Funder: Engineering and Physical Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/N014391/1Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active animals remains unclear. Here, we recorded the spontaneous and evoked electrical activity of single SCN neurons in the diurnal rodent Rhabdomys pumilio, and developed cutting-edge data assimilation and mathematical modeling approaches to uncover the underlying ionic mechanisms. As in nocturnal rodents, R. pumilio SCN neurons were more excited during daytime hours. By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive response that is not present in the SCN of nocturnal rodents. Our modeling revealed and subsequent experiments confirmed transient subthreshold A-type potassium channels as the primary determinant of this response, and suggest a key role for this ionic mechanism in optimizing SCN function to accommodate R. pumilio’s diurnal niche

    Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes

    Get PDF
    Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites

    Daily electrical activity in the master circadian clock of a diurnal mammal

    Get PDF
    This is the final version. Available on open access from eLife Sciences Publications via the DOI in this recordData availability: All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3 and 6. Code for simulating our conductance-based models is available in ModelDB (McDougal et al 2017, J Comput Neurosci) at http://modeldb.yale.edu/267183. Code for performing neuronal data assimilation (neuroDA) to infer model parameters from current-clamp recordings is available at https://github.com/mattmoye/neuroDA; copy archived at https://archive.softwareheritage.org/swh:1:rev:faf27e9035c28320feb2f82c37bd2bb8e0fc0fbd.Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active animals remains unclear. Here, we recorded the spontaneous and evoked electrical activity of single SCN neurons in the diurnal rodent Rhabdomys pumilio, and developed cutting-edge data assimilation and mathematical modeling approaches to uncover the underlying ionic mechanisms. As in nocturnal rodents, R. pumilio SCN neurons were more excited during daytime hours. By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive response that is not present in the SCN of nocturnal rodents. Our modeling revealed and subsequent experiments confirmed transient subthreshold A-type potassium channels as the primary determinant of this response, and suggest a key role for this ionic mechanism in optimizing SCN function to accommodate R. pumilio's diurnal niche.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustNational Science Foundation (NSF)Army Research OfficeUS-UK Fulbright CommissionEngineering and Physical Sciences Research Council (EPSRC

    Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity.

    No full text
    Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions
    corecore