21 research outputs found
The complex genetics of gait speed:Genome-wide meta-analysis approach
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging
GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium
Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27 581 individuals of European descent over 65 years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5 × 10−8) and 39 suggestive (P-value< 5 × 10−5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (β = 0.47, SE = 0.08, P-value = 5.20 × 10−10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-β (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength
Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 x 10(-8)) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality
Recommended from our members
Correction: The complex genetics of gait speed: genome-wide meta-analysis approach
Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and
predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants
of variation in grip strength, we perform a large-scale genetic discovery analysis in a
combined sample of 195,180 individuals and identify 16 loci associated with grip strength
(Po5 10 8) in combined analyses. A number of these loci contain genes implicated in
structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal
transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor
impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are
consistent with a causal effect of higher genetically predicted grip strength on lower fracture
risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings
of grip strength and the causal role of muscular strength in age-related morbidities
and mortality.Sin financiación12.353 JCR (2017) Q1, 3/64 Multidisciplinary Sciences6.582 SJR (2017) Q1, 11/255 Biochemistry, Genetics and Molecular Biology (miscellaneous), 8/472 Chemistry (miscellaneous), 5/294 Physics and Astronomy (miscellaneous)No data IDR 2017UE
Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults.
Interleukin-6 (IL-6) is an inflammatory cytokine that influences the development of inflammatory and aging-related disorders and ultimately longevity. In order to study the influence of variants in genes that regulate inflammatory response on IL-6 levels and longevity, we screened a panel of 477 tag SNPs across 87 candidate genes in >5000 older participants from the population-based Cardiovascular Health Study (CHS). Baseline plasma IL-6 concentration was first confirmed as a strong predictor of all-cause mortality. Functional alleles of the IL6R and PARP1 genes were significantly associated with 15%-20% higher baseline IL-6 concentration per copy among CHS European-American (EA) participants (all p<10(-4)). In a case/control analysis nested within this EA cohort, the minor allele of PARP1 rs1805415 was nominally associated with decreased longevity (p=0.001), but there was no evidence of association between IL6R genotype and longevity. The PARP1 rs1805415--longevity association was subsequently replicated in one of two independent case/control studies. In a pooled analysis of all three studies, the "risk" of longevity associated with the minor allele of PARP1 rs1805415 was 0.79 (95%CI 0.62-1.02; p=0.07). These findings warrant further study of the potential role of PARP1 genotype in inflammatory and aging-related phenotypes