250 research outputs found

    Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations

    Get PDF
    Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0–4 and 0–12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12–14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations

    Two cases of variceal haemorrhage during living-donor liver transplantation

    Get PDF
    Some patients with cirrhosis experience rupture of venous varices before operation, and liver transplantation is a therapy of last resort for these patients. However, we have experienced two cases of intraoperative rupture in whom no abnormalities of the venous varices were seen on endoscopy before operation. One patient with ruptured gastrointestinal varices was treated by direct surgical ligation and the other with ruptured oesophageal gastric varices, spontaneously recovered with a Sengstaken–Blakemore tube. These cases suggest that acute variceal haemorrhage should always be considered as a possibility during living-donor liver transplantation in patients with a history of upper gastrointestinal bleeding. Careful observation of the nasogastic tube is important during clamping of the hepatic portal vein

    Hemin Treatment Abrogates Monocrotaline-Induced Pulmonary Hypertension

    Get PDF
    Treatment of rats with monocrotaline (MCT), a pyrrolizidine alkaloid plant toxin, is known to cause pulmonary hypertension (PH), and it has been used as a useful experimental model of PH. Recent findings suggested that pulmonary inflammation may play a significant role in the pathogenesis of MCT-induced PH. We also demonstrated that, following MCT administration to rats, there was a significant and sustained increase in the pulmonary expression of heme oxygenase-1 (HO-1), which is known to be induced by various oxidative stresses, including inflammation and free heme, and is thought to be essential in the protection against oxidative tissue injuries. In this study, we administered hemin (ferriprotoporphyrin chloride, 30 mol/kg b.w., subcutaneously), a potent inducer of HO-1, every 3 days to rats following subcutaneous administration of MCT (60 mg/kg) and examined its effect on MCT-induced PH and pulmonary inflammation. MCT administration caused pulmonary arterial wall thickening with marked elevation of right ventricular pressure, in association with prominent pulmonary inflammation as revealed by the increase in gene expression of tumor necrosis factor-alpha and the number of infiltrated neutrophils in the lung. In contrast, hemin treatment of MCT-administered animals, which led to a further increase in pulmonary HO-1 mRNA expression, significantly ameliorated MCT-induced PH as well as tissue inflammation. These findings suggest that hemin treatment ameliorates MCT-induced PH possibly mediated through induction of pulmonary HO-1 which leads to the attenuation of pulmonary inflammation

    Sur la p-dimension des corps

    Full text link
    Let A be an excellent integral henselian local noetherian ring, k its residue field of characteristic p>0 and K its fraction field. Using an algebraization technique introduced by the first named author, and the one-dimension case already proved by Kazuya KATO, we prove the following formula: cd_p(K) = dim(A) + p-rank(k), if k is separably closed and K of characteristic zero. A similar statement is valid without those assumptions on k and K
    corecore