53 research outputs found

    Mortensen Observer for a class of variational inequalities -Lost equivalence with stochastic filtering approaches

    Full text link
    We address the problem of deterministic sequential estimation for a nonsmooth dynamics in R governed by a variational inequality, as illustrated by the Skorokhod problem with a reflective boundary condition at 0. For smooth dynamics, Mortensen introduced an energy for the likelihood that the state variable produces-up to perturbations disturbances-a given observation in a finite time interval, while reaching a given target state at the final time. The Mortensen observer is the minimiser of this energy. For dynamics given by a variational inequality and therefore not reversible in time, we study the definition of a Mortensen estimator. On the one hand, we address this problem by relaxing the boundary constraint of the synthetic variable and then proposing an approximated variant of the Mortensen estimator that uses the resulting nonlinear smooth dynamics. On the other hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai equation. We prove a stability result that allows us to interpret the limiting solution as the value function associated with a control problem rather than an estimation problem. In contrast to the case of smooth dynamics, here the zero-noise limit of the robust form of the Zakai equation cannot be understood from the Bellman equation of the value function arising in Mortensen's deterministic estimation. This may unveil a violation of equivalence for non-reversible dynamics between the Mortensen approach and the low noise stochastic approach for nonsmooth dynamics

    Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance

    Get PDF
    Metals are redox-active substances that participate in central biological processes and may be involved in a multitude of pathogenic events. However, considering the inconsistencies reported in the literature, further research is crucial to disentangle the role of metal homeostasis in childhood obesity and comorbidities using well-characterized cohorts and state-of-the-art analytical methods. To this end, we studied an observational population comprising childrenwith obesity and insulin resistance, children with obesity without insulin resistance, and healthy control children. A multi-elemental approach based on the size-fractionation of metal species was applied to quantify the total content of various essential and toxic elements in plasma and erythrocyte samples, and to simultaneously investigate the metal fractions conforming the metalloproteome and the labile metal pool. The most important disturbances in childhood obesity were found to be related to elevated circulating copper levels, decreased content of plasmatic proteins containing chromium, cobalt, iron, manganese, molybdenum, selenium, and zinc, as well as the sequestration of copper, iron, and selenium within erythrocytes. Interestingly, these metal disturbances were normally exacerbated among children with concomitant insulin resistance, and in turn were associated to other characteristic pathogenic events, such as inflammation, oxidative stress, abnormal glucose metabolism, and dyslipidemia. Therefore, this study represents one-step further towards a better understanding of the involvement of metals in the crosstalk between childhood obesity and insulin resistance.This research was partially funded by the Spanish Government through Instituto de Salud Carlos III (CP21/00120, PI18/01316). Á.G.-D. is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and R.G.-D. is recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Trace elements as potential modulators of puberty-induced amelioration of oxidative stress and inflammation in childhood obesity

    Get PDF
    Although puberty is known to influence obesity progression, the molecular mechanisms underlying the role of sexual maturation in obesity-related complications remains largely unexplored. Here, we delve into the impact of puberty on the most relevant pathogenic hallmarks of obesity, namely oxidative stress and inflammation, and their association with trace element blood status. To this end, we studied a well-characterized observational cohort comprising prepubertal (N = 46) and pubertal (N = 48) children with obesity. From all participants, plasma and erythrocyte samples were collected and subjected to metallomics analysis and determination of classical biomarkers of oxidative stress and inflammation. Besides the expected raise of sexual hormones, pubertal children displayed better inflammatory and oxidative control, as reflected by lower levels of C-reactive protein and oxidative damage markers, as well as improved antioxidant defense. This was in turn accompanied by a healthier multielemental profile, with increased levels of essential elements involved in the antioxidant system and metabolic control (metalloproteins containing zinc, molybdenum, selenium, and manganese) and decreased content of potentially deleterious species (total copper, labile free iron). Therefore, our findings suggest that children with obesity have an exacerbated inflammatory and oxidative damage at early ages, which could be ameliorated during pubertal development by the action of trace element-mediated buffering mechanisms.This research was funded by the Spanish Government through Instituto de Salud Carlos III (PI22/01899, PI18/01316). Állvaro González-Domínguez is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and Raúl González-Domínguez is recipient of a “Miguel Servet” fellowship funded by Instituto de Salud Carlos III (CP21/00120)

    Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches

    Get PDF
    We address the problem of deterministic sequential estimation for a nonsmooth dynamics governed by a variational inequality. An example of such dynamics is the Skorokhod problem with a reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear estimator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors established a connection between Mortensen’s approach and the vanishing noise limit of the robust form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can be developed for dynamics governed by a variational inequality. On the one hand, we address this problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen estimator relying on an approximating smooth dynamics. We verify that the equivalence between the deterministic and stochastic approaches holds through a vanishing noise limit. On the other hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the Zakai equation cannot be understood in our case from the Bellman equation on the value function arising in Mortensen’s procedure. This unveils a violation of equivalence for dynamics governed by a variational inequality between the Mortensen approach and the low noise stochastic approach for nonsmooth dynamics

    Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity

    Get PDF
    Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (OBLACK CIRCLE-) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers-thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers-inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers-catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy

    Iron Metabolism in Obesity and Metabolic Syndrome

    Get PDF
    Obesity is an excessive adipose tissue accumulation that may have detrimental effects on health. Particularly, childhood obesity has become one of the main public health problems in the 21st century, since its prevalence has widely increased in recent years. Childhood obesity is intimately related to the development of several comorbidities such as nonalcoholic fatty liver disease, dyslipidemia, type 2 diabetes mellitus, non-congenital cardiovascular disease, chronic inflammation and anemia, among others. Within this tangled interplay between these comorbidities and associated pathological conditions, obesity has been closely linked to important perturbations in iron metabolism. Iron is the second most abundant metal on Earth, but its bioavailability is hampered by its ability to form highly insoluble oxides, with iron deficiency being the most common nutritional disorder. Although every living organism requires iron, it may also cause toxic oxygen damage by generating oxygen free radicals through the Fenton reaction. Thus, iron homeostasis and metabolism must be tightly regulated in humans at every level (i.e., absorption, storage, transport, recycling). Dysregulation of any step involved in iron metabolism may lead to iron deficiencies and, eventually, to the anemic state related to obesity. In this review article, we summarize the existent evidence on the role of the most recently described components of iron metabolism and their alterations in obesity

    Blunted Reducing Power Generation in Erythrocytes Contributes to Oxidative Stress in Prepubertal Obese Children with Insulin Resistance

    Get PDF
    Childhood obesity, and specifically its metabolic complications, are related to deficient antioxidant capacity and oxidative stress. Erythrocytes are constantly exposed to multiple sources of oxidative stress; hence, they are equipped with powerful antioxidant mechanisms requiring permanent reducing power generation and turnover. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are two key enzymes on the pentose phosphate pathway. Both enzymes supply reducing power by generating NADPH, which is essential for maintaining the redox balance within the cell and the activity of other antioxidant enzymes. We hypothesized that obese children with insulin resistance would exhibit blunted G6PDH and 6PGDH activities, contributing to their erythrocytes' redox status imbalances. We studied 15 control and 24 obese prepubertal children, 12 of whom were insulin-resistant according to an oral glucose tolerance test (OGTT). We analyzed erythroid malondialdehyde (MDA) and carbonyl group levels as oxidative stress markers. NADP+/NADPH and GSH/GSSG were measured to determine redox status, and NADPH production by both G6PDH and 6PGDH was assayed spectrophotometrically to characterize pentose phosphate pathway activity. Finally, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) activities were also assessed. As expected, MDA and carbonyl groups levels were higher at baseline and along the OGTT in insulin-resistant children. Both redox indicators showed an imbalance in favor of the oxidized forms along the OGTT in the insulin-resistant obese group. Additionally, the NADPH synthesis, as well as GR activity, were decreased. H2O2 removing enzyme activities were depleted at baseline in both obese groups, although after sugar intake only metabolically healthy obese participants were able to maintain their catalase activity. No change was detected in SOD activity between groups. Our results show that obese children with insulin resistance present higher levels of oxidative damage, blunted capacity to generate reducing power, and hampered function of key NADPH-dependent antioxidant enzymes.This research was funded by Spanish Government through the Carlos III Health Institute (Sanitary Research Fund (FIS)), code PI18/01316. A.G.-D. is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cadiz (INiBICA), code LII19/16IN-CO24

    The dynamic use of EGFR mutation analysis in cell-free DNA as a follow-up biomarker during different treatment lines in non-small-cell lung cancer patients

    Get PDF
    Epidermal growth factor receptor (EGFR) mutational testing in advanced non-small-cell lung cancer (NSCLC) is usually performed in tumor tissue, although cfDNA (cell-free DNA) could be an alternative. We evaluated EGFR mutations in cfDNA as a complementary tool in patients, who had already known EGFR mutations in tumor tissue and were treated with either EGFR-tyrosine kinase inhibitors (TKIs) or chemotherapy. We obtained plasma samples from 21 advanced NSCLC patients with known EGFR tumor mutations, before and during therapy with EGFR-TKIs and/or chemotherapy. cfDNA was isolated and EGFR mutations were analyzed with the multiple targeted cobas EGFR Mutation Test v2. EGFR mutations were detected at baseline in cfDNA from 57% of patients. The semiquantitative index (SQI) significantly decreased from the baseline (median = 11, IQR = 9 5-13) to the best response (median = 0, IQR = 0-0, p < 0 01), followed by a significant increase at progression (median = 11, IQR = 11-15, p < 0 01) in patients treated with either EGFR-TKIs or chemotherapy. The SQI obtained with the cobas EGFR Mutation Test v2 did not correlate with the concentration in copies/mL determined by droplet digital PCR. Resistance mutation p.T790M was observed at progression in patients with either type of treatment. In conclusion, cfDNA multiple targeted EGFR mutation analysis is useful for treatment monitoring in tissue of EGFR-positive NSCLC patients independently of the drug received

    Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile

    Get PDF
    12 p.-7 fig.Rheumatoid arthritis (RA) is a chronic inflammatory disease whose pathogenesis and severity correlates with the presence of macrophage-derived pro-inflammatory cytokines within the inflamed synovium. Macrophage-derived cytokines fuel the pathological processes in RA and are targets of clinically successful therapies. However, although macrophage polarization determines cytokine production, the polarization state of macrophages in RA joints remains poorly defined. To dissect the molecular basis for the tissue-damaging effects of macrophages in RA joints, we undertook the phenotypic and transcriptomic characterization of ex vivo isolated CD14(+) RA synovial fluid (RA-SF) macrophages. Flow cytometry and gene profiling indicated that RA-SF macrophages express pro-inflammatory polarization markers (MMP12, EGLN3, CCR2), lack expression of markers associated with homeostatic and anti-inflammatory polarization (IGF1, HTR2B) and exhibit a transcriptomic profile that resembles the activin A-dependent gene signature of pro-inflammatory in vitro-generated macrophages. In fact, high levels of Smad-activating activin A were found in RA-SF and, accordingly, the Smad signalling pathway was activated in ex vivo-isolated RA-SF macrophages. In vitro experiments on monocytes and macrophages indicated that RA-SF promoted the acquisition of pro-inflammatory markers (INHBA, MMP12, EGLN3, CCR2) but led to a significant reduction in the expression of genes associated with homeostasis and inflammation resolution (FOLR2, SERPINB2, IGF1, CD36), thus confirming the pro-inflammatory polarization ability of RA-SF. Importantly, the macrophage-polarizing ability of RA-SF was inhibited by an anti-activin A-neutralizing antibody, thus demonstrating that activin A mediates the pro-inflammatory macrophage-polarizing ability of RA-SF. Moreover, and in line with these findings, multicolour immunofluorescence evidenced that macrophages within RA synovial membranes (RA-SM) also express pro-inflammatory polarization markers whose expression is activin A-dependent. Altogether, our results demonstrate that macrophages from RA synovial fluids and membranes exhibit an MMP12(+) EGLN3(+) CCR2(+) pro-inflammatory polarization state whose acquisition is partly dependent on activin A from the synovial fluid.This study was supported by Instituto de Salud Carlos III (Grant Nos PI11/00165, to APK, andPI13/01454, to PSM); Comunidad de Madrid/FEDER(RAPHYME Programme; Grant No. S2010/BMD2350,to JLP, ALC and APK); Ministerio de Ciencia e Innovación (Grant Nos RIER RD12/009, to IGA, PSM, JLP,ALC and APK, and SAF2011-23801, to ALC); FIB-HGM (to APK); and Ministerio de Economia y Competitividad (Juan de la Cierva Contract No. JCI-2011-09836and a Miguel Servet contract, to EI and GC).Peer reviewe
    corecore